Whelan J, Rust C. Innovative dietary sources of n-3 fatty acids. Annu Rev Nutr. 2006;26:75–103. https://doi.org/10.1146/annurev.nutr.25.050304.092605.
Article
CAS
Google Scholar
Zhang MJ, Spite M. Resolvins: anti-inflammatory and proresolving mediators derived from omega-3 polyunsaturated fatty acids. Annu Rev Nutr. 2012;32:203–27. https://doi.org/10.1146/annurev-nutr-071811-150726.
Article
CAS
Google Scholar
Zhang TT, et al. Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids. Prog Lipid Res. 2019;75: 100997. https://doi.org/10.1016/j.plipres.2019.100997.
Article
CAS
Google Scholar
Li J, et al. Health benefits of docosahexaenoic acid and its bioavailability: a review. Food Sci Nutr. 2021;9(9):5229–43. https://doi.org/10.1002/fsn3.2299.
Article
CAS
Google Scholar
Salem N Jr, Eggersdorfer M. Is the world supply of omega-3 fatty acids adequate for optimal human nutrition? Curr Opin Clin Nutr Metab Care. 2015;18(2):147–54.
Castejon N, Senorans FJ. Enzymatic modification to produce health-promoting lipids from fish oil, algae and other new omega-3 sources: a review. N Biotechnol. 2020;57:45–54. https://doi.org/10.1016/j.nbt.2020.02.006.
Article
CAS
Google Scholar
Falk MC, et al. Developmental and reproductive toxicological evaluation of arachidonic acid (ARA)-Rich oil and docosahexaenoic acid (DHA)-Rich oil. Food Chem Toxicol. 2017;103:270–8. https://doi.org/10.1016/j.fct.2017.03.011.
Article
CAS
Google Scholar
Wijendran V, Hayes KC. Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annu Rev Nutr. 2004;24:597–615. https://doi.org/10.1146/annurev.nutr.24.012003.132106.
Article
CAS
Google Scholar
Russo GL, et al. Sustainable production of food grade omega-3 oil using aquatic protists: reliability and future horizons. N Biotechnol. 2021;62:32–9.
Article
CAS
Google Scholar
Yokochi T, Honda D, Higashihara T, Nakahara T. Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21. Appl Microbiol Biotechnol. 1998;49(1):72–6. https://doi.org/10.1007/s002530051139.
Article
CAS
Google Scholar
Darley WM, Porter D, Fuller MS. Cell wall composition and synthesis via Golgi-directed scale formation in the marine eucaryote, Schizochytrium aggregatum, with a note on Thraustochytrium sp. Arch Mikrobiol. 1973;90(2):89–106. https://doi.org/10.1007/BF00414512.
Article
CAS
Google Scholar
Heo S-W, et al. Application of Jerusalem artichoke and lipid-extracted algae hydrolysate for docosahexaenoic acid production by Aurantiochytrium sp. KRS101. J Appl Phycol. 2020;32(6):3655–66. https://doi.org/10.1007/s10811-020-02207-z.
Article
CAS
Google Scholar
Chi G, et al. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp. Biotechnol Adv. 2022;55: 107897. https://doi.org/10.1016/j.biotechadv.2021.107897.
Article
CAS
Google Scholar
Lewis KD, et al. Toxicological evaluation of arachidonic acid (ARA)-rich oil and docosahexaenoic acid (DHA)-rich oil. Food Chem Toxicol. 2016;96:133–44. https://doi.org/10.1016/j.fct.2016.07.026.
Article
CAS
Google Scholar
Erkkila AT, et al. Higher plasma docosahexaenoic acid is associated with reduced progression of coronary atherosclerosis in women with CAD. J Lipid Res. 2006;47(12):2814–9. https://doi.org/10.1194/jlr.P600005-JLR200.
Article
CAS
Google Scholar
Aasen IM, et al. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids. Appl Microbiol Biotechnol. 2016;100(10):4309–21. https://doi.org/10.1007/s00253-016-7498-4.
Article
CAS
Google Scholar
Du F, et al. Biotechnological production of lipid and terpenoid from thraustochytrids. Biotechnol Adv. 2021;48: 107725. https://doi.org/10.1016/j.biotechadv.2021.107725.
Article
CAS
Google Scholar
Valentine REAM. Single-cell oils as a source of omega-3 fatty acids an overview of recent advances. J Am Oil Chem Soc. 2013;90:167–82.
Article
Google Scholar
Sukenik A, Wahnon R. Biochemical quality of marine unicellular algae with special emphasis on lipid composition. I. Isochrysis galbana. Aquaculture. 1991;97(1):61–72. https://doi.org/10.1016/0044-8486(91)90279-G.
Article
CAS
Google Scholar
Molina Grima E, et al. EPA from Isochrysis galbana. Growth conditions and productivity. Process Biochem. 1992;27(5):299–305. https://doi.org/10.1016/0032-9592(92)85015-T.
Article
CAS
Google Scholar
Nazir Y, et al. Optimization of culture conditions for enhanced growth, lipid and docosahexaenoic acid (DHA) production of Aurantiochytrium SW1 by response surface methodology. Sci Rep. 2018;8(1):8909. https://doi.org/10.1038/s41598-018-27309-0.
Article
CAS
Google Scholar
Fu J, et al. Enhancement of docosahexaenoic acid production by low-energy ion implantation coupled with screening method based on Sudan black B staining in Schizochytrium sp. Bioresour Technol. 2016;221:405–11. https://doi.org/10.1016/j.biortech.2016.09.058.
Article
CAS
Google Scholar
Zhao B, et al. Enhancement of Schizochytrium DHA synthesis by plasma mutagenesis aided with malonic acid and zeocin screening. Appl Microbiol Biotechnol. 2018;102(5):2351–61. https://doi.org/10.1007/s00253-018-8756-4.
Article
CAS
Google Scholar
Zhao B, et al. Improvement of docosahexaenoic acid fermentation from Schizochytrium sp. AB-610 by staged pH control based on cell morphological changes. Eng Life Sci. 2017;17(9):981–8. https://doi.org/10.1002/elsc.201600249.
Article
CAS
Google Scholar
Ren LJ, et al. Enhanced docosahexaenoic acid production by reinforcing acetyl-CoA and NADPH supply in Schizochytrium sp. HX-308. Bioprocess Biosyst Eng. 2009;32(6):837–43. https://doi.org/10.1007/s00449-009-0310-4.
Article
CAS
Google Scholar
Sun LL, et al. Odd- and branched-chain fatty acids in milk fat from Holstein dairy cows are influenced by physiological factors. Animal. 2022;16(6): 100545. https://doi.org/10.1016/j.animal.2022.100545.
Article
CAS
Google Scholar
Bos DJ, et al. Effects of omega-3 polyunsaturated fatty acids on human brain morphology and function: What is the evidence? Eur Neuropsychopharmacol. 2016;26(3):546–61. https://doi.org/10.1016/j.euroneuro.2015.12.031.
Article
CAS
Google Scholar
Mallick R, Basak S, Duttaroy AK. Docosahexaenoic acid,22:6n–3: its roles in the structure and function of the brain. Int J Dev Neurosci. 2019;79:21–31. https://doi.org/10.1016/j.ijdevneu.2019.10.004.
Article
CAS
Google Scholar
Yu X, et al. Effects of the application of general anesthesia with propofol during the early stage of pregnancy on brain development and function of SD rat offspring and the intervention of DHA. Neurol Res. 2019;41(11):1008–14. https://doi.org/10.1080/01616412.2019.1672381.
Article
Google Scholar
Swanson D, Block R, Mousa SA. Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr. 2012;3(1):1–7. https://doi.org/10.3945/an.111.000893.
Article
CAS
Google Scholar
Ratledge C. Omega-3 biotechnology: errors and omissions. Biotechnol Adv. 2012;30(6):1746–7.
Article
Google Scholar
Huang TY, Lu WC, Chu IM. A fermentation strategy for producing docosahexaenoic acid in Aurantiochytrium limacinum SR21 and increasing C22:6 proportions in total fatty acid. Biores Technol. 2012;123:8–14. https://doi.org/10.1016/j.biortech.2012.07.068.
Article
CAS
Google Scholar
Hu F, et al. Low-temperature effects on docosahexaenoic acid biosynthesis in Schizochytrium sp. TIO01 and its proposed underlying mechanism. Biotechnol Biofuels. 2020;13:172. https://doi.org/10.1186/s13068-020-01811-y.
Article
CAS
Google Scholar
Pal D, et al. Optimization of medium composition to increase the expression of recombinant human interferon-beta using the Plackett–Burman and central composite design in E. coli SE1. 3 Biotech. 2021;11(5):226. https://doi.org/10.1007/s13205-021-02772-1.
Article
Google Scholar
Holdsworth JE, Ratledge C. Lipid turnover in oleaginous yeasts. Microbiology. 1988;134(2):339–46. https://doi.org/10.1099/00221287-134-2-339.
Article
CAS
Google Scholar
Bajpai P, Bajpai PK, Ward OP. Production of docosahexaenoic acid by Thraustochytrium aureum. Appl Microbiol Biotechnol. 1991;35(6):706–10.
Article
CAS
Google Scholar
Li ZY, Ward OP. Production of docosahexaenoic acid by Thraustochytrium roseum. J Ind Microbiol. 1994;13(4):238–41. https://doi.org/10.1007/BF01569755.
Article
CAS
Google Scholar
Wang Z, et al. Sugar profile regulates the microbial metabolic diversity in Chinese Baijiu fermentation. Int J Food Microbiol. 2021;359: 109426. https://doi.org/10.1007/s00253-018-8756-4.
Article
CAS
Google Scholar
Liu C, et al. Raw material regulates flavor formation via driving microbiota in Chinese liquor fermentation. Front Microbiol. 2019;10:1520. https://doi.org/10.3389/fmicb.2019.01520.
Article
Google Scholar
Fakas S, et al. Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenerg. 2009;33(4):573–80. https://doi.org/10.1016/j.biombioe.2008.09.006.
Article
CAS
Google Scholar
Polbrat T, Konkol D, Korczynski M. Optimization of docosahexaenoic acid production by Schizochytrium SP.—a review. Biocatal Agric Biotechnol. 2021;35:66. https://doi.org/10.1016/j.bcab.2021.102076.
Article
CAS
Google Scholar
Kujawska N, et al. Optimizing docosahexaenoic acid (DHA) production by Schizochytrium sp. grown on waste glycerol. Energies. 2021;14(6):1685. https://doi.org/10.3390/en14061685.
Article
CAS
Google Scholar
Orak T, et al. Chicken feather peptone: a new alternative nitrogen source for pigment production by Monascus purpureus. J Biotechnol. 2018;271:56–62. https://doi.org/10.1016/j.jbiotec.2018.02.010.
Article
CAS
Google Scholar
Manikan V, Kalil MS, Hamid AA. Response surface optimization of culture medium for enhanced docosahexaenoic acid production by a Malaysian thraustochytrid. Sci Rep. 2015;5:8611. https://doi.org/10.1038/srep08611.
Article
CAS
Google Scholar
Bajpai P, Bajpai P, Ward O. Optimization of production of docosahexaenoic acid (DHA) byThraustochytrium aureum ATCC 34304. J Am Oil Chem Soc. 1991;68(7):509–14.
Article
CAS
Google Scholar
Ethier S, et al. Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresour Technol. 2011;102(1):88–93. https://doi.org/10.1016/j.biortech.2010.05.021.
Article
CAS
Google Scholar
Shene C, et al. Microbial oils and fatty acids: effect of carbon source on docosahexaenoic acid (C22: 6 n-3, DHA) production by thraustochytrid strains. J Soil Sci Plant Nutr. 2010;10(3):207–16. https://doi.org/10.4067/S0718-95162010000100002.
Article
Google Scholar
Kowluru A, et al. Activation of acetyl-CoA carboxylase by a glutamate- and magnesium-sensitive protein phosphatase in the islet beta-cell. Diabetes. 2001;50(7):1580–7. https://doi.org/10.2337/diabetes.50.7.1580.
Article
CAS
Google Scholar
Lan WZ, Qin WM, Yu LJ. Effect of glutamate on arachidonic acid production from Mortierella alpina. Lett Appl Microbiol. 2002;35(4):357–60. https://doi.org/10.1046/j.1472-765x.2002.01195.x.
Article
CAS
Google Scholar
Nagano N, et al. Effect of trace elements on growth of marine eukaryotes, tharaustochytrids. J Biosci Bioeng. 2013;116(3):337–9. https://doi.org/10.1016/j.jbiosc.2013.03.017.
Article
CAS
Google Scholar
Wu K, et al. Application of the response surface methodology to optimize the fermentation parameters for enhanced docosahexaenoic acid (DHA) production by Thraustochytrium sp. ATCC 26185. Molecules. 2018;23(4):66. https://doi.org/10.3390/molecules23040974.
Article
CAS
Google Scholar
Muthukumar M, Mohan D, Rajendran M. Optimization of mix proportions of mineral aggregates using Box Behnken design of experiments. Cem Concr Compos. 2003;25(7):751–8.
Article
CAS
Google Scholar
Chang G, et al. Fatty acid shifts and metabolic activity changes of Schizochytrium sp. S31 cultured on glycerol. Bioresour Technol. 2013;142:255–60. https://doi.org/10.1016/j.biortech.2013.05.030.
Article
CAS
Google Scholar
Hong WK, et al. Production of lipids containing high levels of docosahexaenoic acid by a newly isolated microalga, Aurantiochytrium sp. KRS101. Appl Biochem Biotechnol. 2011;164(8):1468–80. https://doi.org/10.1007/s12010-011-9227-x.
Article
CAS
Google Scholar
Amorim ML, et al. Microalgae proteins: production, separation, isolation, quantification, and application in food and feed. Crit Rev Food Sci Nutr. 2021;61(12):1976–2002. https://doi.org/10.1080/10408398.2020.1768046.
Article
CAS
Google Scholar
Marques JA, et al. Increasing dietary levels of docosahexaenoic acid-rich microalgae: ruminal fermentation, animal performance, and milk fatty acid profile of mid-lactating dairy cows. J Dairy Sci. 2019;102(6):5054–65. https://doi.org/10.3168/jds.2018-16017.
Article
CAS
Google Scholar
Mavrommatis A, et al. Alterations in the rumen particle-associated microbiota of goats in response to dietary supplementation levels of Schizochytrium spp. Sustainability. 2021;13(2):66. https://doi.org/10.3390/su13020607.
Article
CAS
Google Scholar
Diaz MT, et al. Feeding microalgae increases omega 3 fatty acids of fat deposits and muscles in light lambs. J Food Compos Anal. 2017;56:115–23. https://doi.org/10.1016/j.jfca.2016.12.009.
Article
CAS
Google Scholar
Rodriguez-Herrera M, et al. Feeding microalgae at a high level to finishing heifers increases the long-chain n-3 fatty acid composition of beef with only small effects on the sensory quality. Int J Food Sci Technol. 2018;53(6):1405–13. https://doi.org/10.1111/ijfs.13718.
Article
CAS
Google Scholar
Xu XD, et al. The strategies to reduce cost and improve productivity in DHA production by Aurantiochytrium sp.: From biochemical to genetic respects. Appl Microbiol Biotechnol. 2020;104(22):9433–47. https://doi.org/10.1007/s00253-020-10927-y.
Article
CAS
Google Scholar
Chen W, et al. Improvement in the docosahexaenoic acid production of Schizochytrium sp. S056 by replacement of sea salt. Bioprocess Biosyst Eng. 2016;39(2):315–21. https://doi.org/10.1007/s00449-015-1517-1.
Article
CAS
Google Scholar
Lin Y, et al. Optimization of enzymatic cell disruption for improving lipid extraction from Schizochytrium sp. through response surface methodology. J Oleo Sci. 2018;67(2):215–24. https://doi.org/10.5650/jos.ess17166.
Article
CAS
Google Scholar