Harlan JR, Zohary D. Distribution of wild wheats and barley. Science. 1966;153:1074–80.
Article
CAS
Google Scholar
Zaharieva M, Monneveux P. Cultivated einkorn wheat (Triticum monococcum L. subsp. monococcum): the long life of a founder crop of agriculture. Genet Resour Crop Ev. 2014;61:677–706.
Article
CAS
Google Scholar
Cooper R. Re-discovering ancient wheat varieties as functional foods. J Tradit Complement Med. 2015;5:138–43.
Article
Google Scholar
Rawat N, Sehgal SK, Joshi A, Rothe N, Wilson DL, McGraw N, et al. A diploid wheat TILLING resource for wheat functional genomics. BMC Plant Biol. 2012;12:205.
Article
CAS
Google Scholar
Wang M, Wang S, Xia G. From genome to gene: a new epoch for wheat research? Trends Plant Sci. 2015;20(6):380–7.
Article
Google Scholar
Borrill P, Adamski N, Uauy C. Genomics as the key to unlocking the polyploid potential of wheat. New Phytol. 2015;208:1008–22.
Article
Google Scholar
Mochida K, Shinozaki K. Unlocking Triticeae genomics to sustainably feed the future. Plant Cell Physiol. 2013;54(12):1931–50.
Article
CAS
Google Scholar
Harwood WA. Advances and remaining challenges in the transformation of barley and wheat. J Exp Bot. 2012;63(5):1791–8.
Article
CAS
Google Scholar
Wang M, Wang S, Liang Z, Shi W, Gao C, Xia G. From genetic stock to genome editing: gene exploitation in wheat. Trends Biotechnol. 2018;36(2):160–72.
Article
CAS
Google Scholar
Lorz H, Baker B, Schell J. Gene transfer to cereal cells mediated by protoplast transformation. Mol Gen Genet. 1985;199:178–82.
Article
Google Scholar
Hauptmann RM, Ozias-Akins P, Vasil V, Tabaeizadeh Z, Rogers SG, Horsch RB, et al. Transient expression of electroporated DNA in monocotyledonous and dicotyledonous species. Plant Cell Rep. 1987;6(4):265–70.
Article
CAS
Google Scholar
Wang YC, Klein TM, Fromm M, Cao J, Sanford JC, Wu R. Transient expression of foreign genes in rice, wheat and soybean cells following particle bombardment. Plant Mol Biol. 1988;11:433–9.
Article
CAS
Google Scholar
Takumi S, Otani M, Shimada T. Effect of six promoter-intron combinations on transient reporter gene expression in einkorn, emmer and common wheat cells by particle bombardment. Plant Sci. 1994;103:161–6.
Article
CAS
Google Scholar
Hauptmann RM, Vasil V, Ozias-Akins P, Tabaeizadeh Z, Rogers SG, Fraley RT, et al. Evaluation of selectable markers for obtaining stable transformants in the gramineae. Plant Physiol. 1988;86(2):602–6.
Article
CAS
Google Scholar
Miroshnichenko D, Chaban I, Chernobrovkina M, Dolgov S. Protocol for efficient regulation of in vitro morphogenesis in einkorn (Triticum monococcum L.), a recalcitrant diploid wheat species. PLoS One. 2017;12(3):e0173533.
Article
Google Scholar
Sparks CA, Jones HD. Biolistics transformation of wheat. Methods Molecular Biology. 2009;478:71–92.
Article
Google Scholar
Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun. 2016;7:12617.
Article
CAS
Google Scholar
Millwood R, Moon H, Neal Stewart C Jr. Fluorescent proteins in transgenic plants. In: Geddes C, editor. Reviews in fluorescence. New York: Springer; 2008. p. 387–403.
Google Scholar
Furtado A, Henry RJ, Pellegrineschi A. Analysis of promoters in transgenic barley and wheat. Plant Biotechnol J. 2009;7(3):240–53.
Article
CAS
Google Scholar
Xue GP, Rae AL, White RG, Drenth J, Richardson T, McIntyre CL. A strong root-specific expression system for stable transgene expression in bread wheat. Plant Cell Rep. 2016;35:469–81.
Article
CAS
Google Scholar
Jordan MC. Green fluorescent protein as a visual marker for wheat transformation. Plant Cell Rep. 2000;19:1069–75.
Article
CAS
Google Scholar
Souza C, Eduardo D, Fettig S, Ziegler P, Beck E. Transformation of an argentine spring wheat genotype: optimization of the protocols for particle bombardment of excised immature embryos and rapid isolation of transgenic plants. BAG J Basic Appl Genet. 2015;26(1):18–37.
Google Scholar
Miroshnichenko D, Pushin A, Dolgov S. Assessment of the pollen-mediated transgene flow from the plants of herbicide resistant wheat to conventional wheat (Triticum aestivum L.). Euphytica. 2016;209:71–84.
Article
CAS
Google Scholar
Richards HA, Rudas VA, Sun H, McDaniel JK, Tomaszewski Z, Conger BV. Construction of a GFP-BAR plasmid and its use for switchgrass transformation. Plant Cell Rep. 2001;20:48–54.
Article
CAS
Google Scholar
Finer J, Vain P, Jones M, Mcmullen M. Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep. 1992;11:323–8.
Article
CAS
Google Scholar
Finer JJ. Generation of transgenic soybean (Glycine max) via particle bombardment of embryogenic cultures. Curr Protoc Plant Biol. 2016;1:592–603.
Article
Google Scholar
Miroshnichenko D, Chernobrovkina M, Dolgov S. Somatic embryogenesis and plant regeneration from immature embryos of Triticum timopheevii and Triticum kiharae Dorof. Et Migusch, wheat species with G genome. Plant Cell Tissue Organ Cult. 2016;125(3):495–508.
Article
CAS
Google Scholar
Rogers SO, Bendich AJ. Extraction of DNA from milligram amounts of fresh herbarium and mummified plant tissues. Plant Mol Biol. 1985;5:69–76.
Article
CAS
Google Scholar
Rademacher W. Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Ann Rev Plant Physiol. 2000;51:501–31.
Article
CAS
Google Scholar
Sah SK, Kaur A, Kaur G, Cheema GS. Genetic transformation of rice: problems progress and prospects. J Rice Res. 2014;3:132.
Google Scholar
Gaponenko AK, Mishutkina YV, Timoshenko AA, Shulga OA. Genetic transformation of wheat: state of the art. Russ J Genet. 2018;53:267–83.
Article
Google Scholar
Rasco-Gaunt S, Riley A, Barcelo P, Lazzeri PA. Analysis of particle bombardment parameters to optimize DNA delivery into wheat tissues. Plant Cell Rep. 1999;19:118–27.
Article
CAS
Google Scholar
Rasco-Gaunt S, Riley A, Cannell M, Barcelo P, Lazzeri PA. 2001. Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment. J Exp Bot. 2001;52:865–74.
Article
CAS
Google Scholar
Yao Q, Cong L, He G, Chang J, Li K, Yang G. Optimization of wheat co-transformation procedure with gene cassettes resulted in an improvement in transformation frequency. Mol Biol Rep. 2007;34:61–7.
Article
CAS
Google Scholar
He Y, Wang Q, Zeng J, Sun T, Yang G-X, He G-Y. Current status and trends of wheat genetic transformation studies in China. J Integr Agr. 2015;14(3):438–52.
Article
Google Scholar
Harwood WA, Ross SM, Cilento P, Snape JW. The effect of DNA/gold particle preparation technique, and particle bombardment device, on the transformation of barley (Hordeum vulgare). Euphytica. 2000;111:67–76.
Article
CAS
Google Scholar
Yadav T, Kachhwaha S, Kothari SL. Efficient in vitro plant regeneration and generation of transgenic plants in barley (Hordeum vulgare L.) using particle bombardment. J Plant Biochem Biotechnol. 2013;22:202–13.
Article
CAS
Google Scholar
Popelka JC, Xu J, Altpeter F. Generation of rye plants with low copy number after biolistic gene transfer and production of instantly marker-free transgenic rye. Transgenic Res. 2003;12:587–96.
Article
CAS
Google Scholar
Davies KM, Deroles SC, Boase MR, Hunter DA, Schwinn KE. Biolistics-based gene silencing in plants using a modified particle inflow gun. Methods Mol Biol. 2013;940:63–74.
CAS
PubMed
Google Scholar
Able JR, Rathus C, Godwin ID. The investigation of optimal bombardment parameters for transient and stable transgene expression in sorghum. In Vitro Cell Dev Biol-Plant. 2001;37:341–8.
Article
CAS
Google Scholar
Bliffeld M, Mundy J, Potrykus I, Fütterer J. Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor Appl Genet. 1999;98:1079–86.
Article
CAS
Google Scholar
Fadeev VS, Blinkova OV, Gaponenko AK. Optimization of biological and physical parameters for biolistic genetic transformation of common wheat (Triticum aestivum L.) using a particle inflow gun. Russ J Genet. 2006;42:402–11.
Article
CAS
Google Scholar
Gondo T, Matsumoto J, Tsuruta S, Yoshida M, Kawakami A, Terami F, et al. Particle inflow gun-mediated transformation of multiple-shoot clumps in Rhodes grass (Chloris gayana). J Plant Physiol. 2009;166(4):435–41.
Article
CAS
Google Scholar
O’Kennedy M, Burger JT, Botha FC. Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase. Plant Cell Rep. 2004;22:684–90.
Article
Google Scholar
O'Kennedy M, Burger J, Berger D. Transformation of elite white maize using the particle inflow gun and detailed analysis of a low-copy integration event. Plant Cell Rep. 2001;20:721–30.
Rivera AL, Gómez-Lim M, Fernández F, Loske AM. Physical methods for genetic plant transformation. Phys Life Rev. 2012;9(3):308–45.
Article
Google Scholar
Nehra SH, Chibbar RN, Leung N, Caswell K, Mallard C, Steinhauer L, et al. Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs. Plant J. 1994;5:285–97.
Article
CAS
Google Scholar
Li B, Leung N, Caswell K, Chibbar RN. Recovery and characterization of transgenic plants from two spring wheat cultivars with low embryogenesis efficiencies by the bombardment of isolated scutella. In Vitro Cell Dev Biol-Plant. 2003;39:12–9.
Article
Google Scholar
Gadaleta A, Blechl AE, Nguyen S, Cardone MF, Ventura M, Quick JS, Blanco A. Stably expressed D-genome-derived HMW glutenin subunit genes transformed into different durum wheat genotypes change dough mixing properties. Mol Breeding. 2008;22(2):267–79.
Article
CAS
Google Scholar
Krysiak C, Mazuś B, Buchowicz J. Generation of DNA double-strand breaks and inhibition of somatic embryogenesis by tungsten microparticles in wheat. Plant Cell Tissue Organ Cult. 1999;58:163–70.
Article
CAS
Google Scholar
Miroshnichenko D, Filippov M, Dolgov S. Effects of daminozide on somatic embryogenesis from immature and mature embryos of wheat. AJCS. 2009;3(2):83–94.
CAS
Google Scholar
Guo B, Abbasi BH, Zeb A, Xu LL, Wei YH. Thidiazuron: a multi-dimensional plant growth regulator. Afr J Biotechnol. 2011;10:8984–9000.
Article
CAS
Google Scholar
Huetteman SC, Preece JE. Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult. 1993;33:105–19.
Article
CAS
Google Scholar
Yadava P, Abhishek A, Singh R, Singh I, Kaul T, Pattanayak A, Agrawal PK. Advances in maize transformation technologies and development of transgenic maize. Front Plant Sci. 2017;7:1949.
Article
Google Scholar
Merrick P, Fei S. Plant regeneration and genetic transformation in switchgrass-a review. J Integr Agr. 2015;14(3):483–93.
Article
CAS
Google Scholar
Altpeter F, Vasil V, Srivastava V, Stöger E, Vasil IK. Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Rep. 1996;16:12–7.
Article
CAS
Google Scholar
Trifonova A, Madsen S, Olesen A. Agrobacterium-mediated transgene delivery and integration into barley under a range of in vitro culture conditions. Plant Sci. 2001;161:871–80.
Article
CAS
Google Scholar
Sharma VK, Monostori T, Gobel C, Hansch R, Bittner F, Wasternack C, et al. Transgenic barley plants overexpressing a 13-lipoxygenase to modify oxylipin signature. Phytochemistry. 2006;67:264–76.
Article
CAS
Google Scholar
Tadesse Y, Sagi L, Swennen R, Jacobs M. Optimization of transformation condition and production of transgenic sorghum (Sorghum bicolor) via microparticle bombardment. Plant Cell Tissue Organ Cult. 2003;75:1–18.
Article
CAS
Google Scholar
He Y, Jones HD, Chen S, Chen XM, Wang DW, Li KX, et al. Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency. J Exp Bot. 2010;61:1567–81.
Article
CAS
Google Scholar
Rajeevkumar S, Anunanthini P, Sathishkumar R. Epigenetic silencing in transgenic plants. Front Plant Sci. 2015;6:693.
Article
Google Scholar
Zhang K, Liu J, Zhang Y, Yang Z, Gao C. Biolistic genetic transformation of a wide range of Chinese elite wheat (Triticum aestivum L.) varieties. J Genet Genomics. 2015;42(1):39–42.
Article
Google Scholar