Swartz JR: Transforming biochemical engineering with cell-free biology. AIChE Journal. 2012, 58: 5-13. 10.1002/aic.13701.
Article
CAS
Google Scholar
White ER, Reed TM, Ma Z, Hartman MCT: Replacing amino acids in translation: Expanding chemical diversity with non-natural variants. Methods. 2013, 60: 70-74. 10.1016/j.ymeth.2012.03.015.
Article
CAS
Google Scholar
Nilsson BL, Soellner MB, Raines RT: Chemical synthesis of proteins. Annu Rev Biophys Biomol Struct. 2005, 34: 91-118. 10.1146/annurev.biophys.34.040204.144700.
Article
CAS
Google Scholar
Kim HC, Kim TW, Kim DM: Prolonged production of proteins in a cell-free protein synthesis system using polymeric carbohydrates as an energy source. Process Biochem. 2011, 46 (6): 1366-1369. 10.1016/j.procbio.2011.03.008.
Article
CAS
Google Scholar
Zawada JF, Yin G, Steiner AR, Yang J, Naresh A, Roy SM, Gold DS, Heinsohn HG, Murray CJ: Microscale to manufacturing scale-up of cell-free cytokine production–a new approach for shortening protein production development timelines. Biotechnol Bioeng. 2011, 108 (7): 1570-1578. 10.1002/bit.23103.
Article
CAS
Google Scholar
Madin K, Sawasaki T, Ogasawara T, Endo Y: A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes. Proc Natl Acad Sci USA. 2000, 97 (2): 559-564. 10.1073/pnas.97.2.559.
Article
CAS
Google Scholar
Slater MR, Hurst R, Pferdehirt B, White D, Niles A, Betz N, Schenborn E: Expression of Soluble Native Human Proteins in Cell-Free Extracts. Promega Notes. 2005, 91: 22-25.
Google Scholar
Zhao KQ, Hurst R, Slater MR, Bulleit RF: Functional protein expression from a DNA based wheat germ cell-free system. J Struct Funct Genomics. 2007, 8 (4): 199-208. 10.1007/s10969-007-9035-2.
Article
CAS
Google Scholar
Takai K, Sawasaki T, Endo Y: Practical cell-free protein synthesis system using purified wheat embryos. Nature protocols. 2010, 5 (2): 227-238. 10.1038/nprot.2009.207.
Article
CAS
Google Scholar
Jackson M, Boutell J, Cooley N, He M: Cell-free protein synthesis for proteomics. Briefings in functional genomics and proteomics. 2004, 2: 308-319. 10.1093/bfgp/2.4.308.
Article
CAS
Google Scholar
Ezure T, Suzuki T, Shikata M, Ito M, Ando E: A cell-free protein synthesis system from insect cells. Methods Mol Biol. 2010, 607: 31-42. 10.1007/978-1-60327-331-2_4.
Article
Google Scholar
Brodel AK, Sonnabend A, Kubick S: Cell-free protein expression based on extracts from CHO cells. Biotechnol Bioeng. 2014, 111 (1): 25-36. 10.1002/bit.25013.
Article
Google Scholar
Hodgman CE, Jewett MC: Optimized extract preparation methods and reaction conditions for improved yeast cell-free protein synthesis. Biotechnol Bioeng. 2013, 110 (10): 2643-2654. 10.1002/bit.24942.
Article
CAS
Google Scholar
Carlson ED, Gan R, Hodgman CE, Jewett MC: Cell-free protein synthesis: applications come of age. Biotechnol Adv. 2012, 30 (5): 1185-1194. 10.1016/j.biotechadv.2011.09.016.
Article
CAS
Google Scholar
Komoda K, Naito S, Ishikawa M: Replication of plant RNA virus genomes in a cell-free extract of evacuolated plant protoplasts. Proc Natl Acad Sci USA. 2004, 101 (7): 1863-1867. 10.1073/pnas.0307131101.
Article
CAS
Google Scholar
Gursinsky T, Schulz B, Behrens SE: Replication of Tomato bushy stunt virus RNA in a plant in vitro system. Virology. 2009, 390 (2): 250-260. 10.1016/j.virol.2009.05.009.
Article
CAS
Google Scholar
Ishibashi K, Komoda K, Ishikawa M: In vitro translation and replication of tobamovirus RNA in a cell-free extract of evacuolated tobacco BY-2 protoplasts. 2006, Berlin: Springer
Book
Google Scholar
Loewus MW, Loewus F: The Isolation and Characterization of d-Glucose 6-Phosphate Cycloaldolase (NAD-Dependent) from Acer pseudoplatanus L. Cell Cultures: Its Occurrence in Plants. Plant Physiol. 1971, 48 (3): 255-260. 10.1104/pp.48.3.255.
Article
CAS
Google Scholar
Endo Y, Sawasaki T: High-throughput, genome-scale protein production method based on the wheat germ cell-free expression system. Biotechnol Adv. 2003, 21 (8): 695-713. 10.1016/S0734-9750(03)00105-8.
Article
CAS
Google Scholar
Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3.
Article
CAS
Google Scholar
Kahn TW, Beachy RN, Falk MM: Cell-free expression of a GFP fusion protein allows quantitation in vitro and in vivo. Curr Biol. 1997, 7 (4): R207-208. 10.1016/S0960-9822(06)00100-X.
Article
CAS
Google Scholar
Yukawa M, Kuroda H, Sugiura M: A new in vitro translation system for non-radioactive assay from tobacco chloroplasts: effect of pre-mRNA processing on translation in vitro. Plant J. 2007, 49 (2): 367-376. 10.1111/j.1365-313X.2006.02948.x.
Article
CAS
Google Scholar
Kolb VA, Makeyev EV, Spirin AS: Folding of firefly luciferase during translation in a cell-free system. The EMBO journal. 1994, 13 (15): 3631-3637.
CAS
Google Scholar
Kolb VA, Makeyev EV, Spirin AS: Co-translational folding of an eukaryotic multidomain protein in a prokaryotic translation system. J Biol Chem. 2000, 275 (22): 16597-16601. 10.1074/jbc.M002030200.
Article
CAS
Google Scholar
Kozak M: Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene. 2005, 361: 13-37.
Article
CAS
Google Scholar
Fan Q, Treder K, Miller WA: Untranslated regions of diverse plant viral RNAs vary greatly in translation enhancement efficiency. BMC Biotechnol. 2012, 12: 22-10.1186/1472-6750-12-22.
Article
CAS
Google Scholar
Sonenberg N: mRNA translation: influence of the 5' and 3' untranslated regions. Curr Opin Genet Dev. 1994, 4 (2): 310-315. 10.1016/S0959-437X(05)80059-0.
Article
CAS
Google Scholar
Sachs AB, Sarnow P, Hentze MW: Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell. 1997, 89 (6): 831-838. 10.1016/S0092-8674(00)80268-8.
Article
CAS
Google Scholar
Herrshey JWB, Merrick WC: The pathway and mechanism of initiation of protein synthesis. 2000, New York: Cold Spring Harbor
Google Scholar
Dreher TW, Miller WA: Translational control in positive strand RNA plant viruses. Virology. 2006, 344 (1): 185-197. 10.1016/j.virol.2005.09.031.
Article
CAS
Google Scholar
Kneller EL, Rakotondrafara AM, Miller WA: Cap-independent translation of plant viral RNAs. Virus Res. 2006, 119 (1): 63-75. 10.1016/j.virusres.2005.10.010.
Article
CAS
Google Scholar
Nicholson BL, White KA: 3' Cap-independent translation enhancers of positive-strand RNA plant viruses. Curr Opin Virol. 2011, 1 (5): 373-380. 10.1016/j.coviro.2011.10.002.
Article
CAS
Google Scholar
Walsh D, Mohr I: Viral subversion of the host protein synthesis machinery. Nat Rev Microbiol. 2011, 9 (12): 860-875. 10.1038/nrmicro2655.
Article
CAS
Google Scholar
Elroy-Stein O, Fuerst TR, Moss B: Cap-independent translation of mRNA conferred by encephalomyocarditis virus 5' sequence improves the performance of the vaccinia virus/bacteriophage T7 hybrid expression system. Proc Natl Acad Sci USA. 1989, 86 (16): 6126-6130. 10.1073/pnas.86.16.6126.
Article
CAS
Google Scholar
Parks GD, Duke GM, Palmenberg AC: Encephalomyocarditis virus 3C protease: efficient cell-free expression from clones which link viral 5' noncoding sequences to the P3 region. J Virol. 1986, 60 (2): 376-384.
CAS
Google Scholar
Wang S, Miller WA: A sequence located 4.5 to 5 kilobases from the 5' end of the barley yellow dwarf virus (PAV) genome strongly stimulates translation of uncapped mRNA. J Biol Chem. 1995, 270 (22): 13446-13452. 10.1074/jbc.270.22.13446.
Article
CAS
Google Scholar
Ding H, Griesel C, Nimtz M, Conradt HS, Weich HA, Jager V: Molecular cloning, expression, purification, and characterization of soluble full-length, human interleukin-3 with a baculovirus-insect cell expression system. Protein Expr Purif. 2003, 31 (1): 34-41. 10.1016/S1046-5928(03)00138-4.
Article
CAS
Google Scholar
Suzuki T, Ito M, Ezure T, Kobayashi S, Shikata M, Tanimizu K, Nishimura O: Performance of expression vector, pTD1, in insect cell-free translation system. J Biosci Bioeng. 2006, 102 (1): 69-71. 10.1263/jbb.102.69.
Article
CAS
Google Scholar
Wickham TJ, Davis T, Granados RR, Shuler ML, Wood HA: Screening of insect cell lines for the production of recombinant proteins and infectious virus in the baculovirus expression system. Biotechnol Prog. 1992, 8 (5): 391-396. 10.1021/bp00017a003.
Article
CAS
Google Scholar
Yamaji H, Hirakawa D, Tagai S, Fukuda H: Production of protein kinase C-delta by the baculovirus-insect cell system in serum-supplemented and serum-free media. J Biosci Bioeng. 2003, 95 (2): 185-187.
Article
CAS
Google Scholar
Akbergenov RZ, Zhanybekova SS, Kryldakov RV, Zhigailov A, Polimbetova NS, Hohn T, Iskakov BK: ARC-1, a sequence element complementary to an internal 18S rRNA segment, enhances translation efficiency in plants when present in the leader or intercistronic region of mRNAs. Nucleic Acids Res. 2004, 32 (1): 239-247. 10.1093/nar/gkh176.
Article
CAS
Google Scholar
Matveeva OV, Shabalina SA: Intermolecular mRNA-rRNA hybridization and the distribution of potential interaction regions in murine 18S rRNA. Nucleic Acids Res. 1993, 21 (4): 1007-1011. 10.1093/nar/21.4.1007.
Article
CAS
Google Scholar
Sarge KD, Maxwell ES: Evidence for a Competitive-Displacement Model for the initiation of protein synthesis involving the intermolecular hybridization of 5 S rRNA, 18 S rRNA and mRNA. FEBS Lett. 1991, 294 (3): 234-238. 10.1016/0014-5793(91)81437-D.
Article
CAS
Google Scholar
Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TM: The 5'-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucleic Acids Res. 1987, 15 (8): 3257-3273. 10.1093/nar/15.8.3257.
Article
CAS
Google Scholar
Zaccomer B, Haenni AL, Macaya G: The remarkable variety of plant RNA virus genomes. J Gen Virol. 1995, 76 (Pt 2): 231-247.
Article
CAS
Google Scholar
Gallie DR, Walbot V: Identification of the motifs within the tobacco mosaic virus 5'-leader responsible for enhancing translation. Nucleic Acids Res. 1992, 20 (17): 4631-4638. 10.1093/nar/20.17.4631.
Article
CAS
Google Scholar
Gallie DR: Translational control of cellular and viral mRNAs. Plant Mol Biol. 1996, 32 (1–2): 145-158.
Article
CAS
Google Scholar
Sawasaki T, Ogasawara T, Morishita R, Endo Y: A cell-free protein synthesis system for high-throughput proteomics. Proc Natl Acad Sci USA. 2002, 99 (23): 14652-14657. 10.1073/pnas.232580399.
Article
CAS
Google Scholar
Kamura N, Sawasaki T, Kasahara Y, Takai K, Endo Y: Selection of 5'-untranslated sequences that enhance initiation of translation in a cell-free protein synthesis system from wheat embryos. Bioorg Med Chem Lett. 2005, 15 (24): 5402-5406. 10.1016/j.bmcl.2005.09.013.
Article
CAS
Google Scholar
Kozak M: How strong is the case for regulation of the initiation step of translation by elements at the 3' end of eukaryotic mRNAs?. Gene. 2004, 343 (1): 41-54. 10.1016/j.gene.2004.08.011.
Article
CAS
Google Scholar
Vasilev N, Gromping U, Lipperts A, Raven N, Fischer R, Schillberg S: Optimization of BY-2 cell suspension culture medium for the production of a human antibody using a combination of fractional factorial designs and the response surface method. Plant Biotechnol J. 2013, 11 (7): 867-874. 10.1111/pbi.12079.
Article
CAS
Google Scholar