Herring RJ: Opposition to transgenic technologies: ideology, interests and collective action frames. Nat Rev Genet. 2008, 9: 458-63. 10.1038/nrg2338.
Article
CAS
Google Scholar
Cellini F, Chesson A, Colquhoun I, Constable A, Davies HV, Engel KH, Gatehouse AM, Karenlampi S, Kok EJ, Leguay JJ, Lehesranta S, Noteborn HP, Pedersen J, Smith M: Unintended effects and their detection in genetically modified crops. Food Chem Toxicol. 2004, 42: 1089-1125. 10.1016/j.fct.2004.02.003.
Article
CAS
Google Scholar
Hare PD, Chua NH: Excision of selectable marker genes from transgenic plants. Nat Biotechnol. 2002, 20: 575-80. 10.1038/nbt0602-575.
CAS
Google Scholar
Hohn B, Levy AA, Puchta H: Elimination of selection markers from transgenic plants. Curr Opin Biotechnol. 2001, 12: 139-143. 10.1016/S0958-1669(00)00188-9.
Article
CAS
Google Scholar
Chawla R, Ariza-Nieto M, Wilson AJ, Moore SK, Srivastava V: Transgene expression produced by biolistic-mediated, site-specific gene integration is consistently inherited by the subsequent generations. Plant Biotechnol J. 2006, 4: 209-18. 10.1111/j.1467-7652.2005.00173.x.
Article
CAS
Google Scholar
Sauer B: Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1987, 7 (6): 2087-2096.
Article
CAS
Google Scholar
Miki B, McHugh S: Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnology. 2004, 107 (3): 193-232. 10.1016/j.jbiotec.2003.10.011.
Article
CAS
Google Scholar
Thomson JG, Ow DW: Site-specific recombination systems for the genetic manipulation of eukaryotic genomes. Genesis. 2006, 44: 465-476. 10.1002/dvg.20237.
Article
CAS
Google Scholar
Keravala A, Groth AC, Jarrahian S, Thyagarajan B, Hoyt JJ, Kirby PJ, Calos MP: A diversity of serine phage integrases mediate site-specific recombination in mammalian cells. Mol Genet Genomics. 2006, 276 (2): 135-146. 10.1007/s00438-006-0129-5.
Article
CAS
Google Scholar
Thomason LC, Calendar R, Ow DW: Gene insertion and replacement in Schizosaccharomyces pombe mediated by the Streptomyces bacteriophage phiC31 site-specific recombination system. Mol Genet Genomics. 2001, 265: 1031-1038. 10.1007/s004380100498.
Article
CAS
Google Scholar
Thorpe HM, Smith MC: In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci USA. 1998, 95 (10): 5505-5510. 10.1073/pnas.95.10.5505.
Article
CAS
Google Scholar
Groth AC, Olivares EC, Thyagarajan B, Calos MP: A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci USA. 2000, 97 (11): 5995-6000. 10.1073/pnas.090527097.
Article
CAS
Google Scholar
Lutz K, Corneille S, Azhagiri AK, Svab Z, Maliga P: A novel approach to plastid transformation utilizes the phiC31 phage integrase. Plant J. 2004, 37: 906-913. 10.1111/j.1365-313X.2004.02015.x.
Article
CAS
Google Scholar
Kittiwongwattana C, Lutz K, Clark M, Maliga P: Plastid marker gene excision by the phiC31 phage site-specific recombinase. Plant Mol Biol. 2007, 64: 137-43. 10.1007/s11103-007-9140-4.
Article
CAS
Google Scholar
Lutz KA, Maliga P: Plastid genomes in a regenerating tobacco shoot derive from a small number of copies selected through a stochastic process. Plant J. 2008, 56: 975-83. 10.1111/j.1365-313X.2008.03655.x.
Article
CAS
Google Scholar
Gils M, Marillonnet S, Werner S, Grützner R, Giritch A, Engler C, Schachschneider R, Klimyuk V, Gleba Y: A novel hybrid seed system for plants. Plant Biotechnol J. 2008, 6 (3): 226-235. 10.1111/j.1467-7652.2007.00318.x.
Article
CAS
Google Scholar
Rubtsova M, Kempe K, Gils A, Ismagul A, Weyen J, Gils M: Expression of active Streptomyces phage phiC31 integrase in transgenic wheat plants. Plant Cell Rep. 2008, 27: 1821-1831. 10.1007/s00299-008-0604-z.
Article
CAS
Google Scholar
Bayley CC, Morgan M, Dale EC, Ow DW: Exchange of gene activity in transgenic plants catalyzed by the Cre-lox site-specific recombination system. Plant Mol Biol. 1992, 18: 353-361. 10.1007/BF00034962.
Article
CAS
Google Scholar
Thomson JG, Yau YY, Blanvillain R, Chiniquy D, Thilmony R, Ow DW: ParA resolvase catalyzes site-specific excision of DNA from the Arabidopsis genome. Transgenic Res. 2009, 18 (2): 237-48. 10.1007/s11248-008-9213-4.
Article
CAS
Google Scholar
Blanvillain R, Kim JH, Lima A, Ow DW: OXIDATIVE STRESS 3 is a chromatin-associated factor involved in tolerance to heavy metals and oxidative stress. Plant J. 2009, 57 (4): 654-665. 10.1111/j.1365-313X.2008.03717.x.
Article
CAS
Google Scholar
Laubinger S, Zeller G, Henz SR, Sachsenberg T, Widmer CK, Naouar N, Vuylsteke M, Schölkopf B, Rätsch G, Weigel D: At-TAX: a whole genome tiling array resource for developmental expression analysis and transcript identification in Arabidopsis thaliana. Genome Biol. 2008, 9: R112-10.1186/gb-2008-9-7-r112.
Article
Google Scholar
Ow DW: GM maize from site-specific recombination technology, what next?. Curr Opin Biotechnol. 2007, 18: 115-120. 10.1016/j.copbio.2007.02.004.
Article
CAS
Google Scholar
Environmental USDA-APHIS: Assessment of Petition 04-229-01P. [http://www.aphis.usda.gov/brs/aphisdocs/04_22901p_pea.pdf]
Dale EC, Ow DW: Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA. 1991, 88: 10558-10562. 10.1073/pnas.88.23.10558.
Article
CAS
Google Scholar
Russell SH, Hoopes JL, Odell JT: Directed excision of a transgene from the plant genome. Mol Gen Genet. 1992, 234: 49-59.
CAS
Google Scholar
Srivastava V, Ow DW: Single-copy primary transformants of maize obtained through the co-introduction of a recombinase-expressing construct. Plant Mol Biol. 2001, 46: 561-566. 10.1023/A:1010646100261.
Article
CAS
Google Scholar
Lyznik LA, Rao KV, Hodges TK: FLP-mediated recombination of FRT sites in the maize genome. Nucleic Acids Res. 1996, 24: 3784-3789. 10.1093/nar/24.19.3784.
Article
CAS
Google Scholar
Hu Q, Kononowicz-Hodges H, Nelson-Vasilchik K, Viola D, Zeng P, Liu H, Kausch AP, Chandlee JM, Hodges TK, Luo H: FLP recombinase-mediated site-specific recombination in rice. Plant Biotechnol J. 2008, 6: 176-188. 10.1111/j.1467-7652.2007.00310.x.
Article
CAS
Google Scholar
Grønlund JT, Stemmer C, Lichota J, Merkle T, Grasser KD: Functionality of the β/six Site-Specific Recombination System in Tobacco and Arabidopsis: A Novel Tool for Genetic Engineering of Plant Genomes. Plant Mol Biol. 2007, 63: 545-556. 10.1007/s11103-006-9108-9.
Article
Google Scholar
Nanto K, Ebinuma H: Marker-free site-specific integration plants. Transgenic Res. 2008, 17: 337-344. 10.1007/s11248-007-9106-y.
Article
CAS
Google Scholar
Zuo J, Niu QW, Chua NH: Technical advance: An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J. 2000, 24: 265-273. 10.1046/j.1365-313x.2000.00868.x.
Article
CAS
Google Scholar
Hoff T, Schnorr KM, Mundy J: A recombinase-mediated transcriptional induction system in transgenic plants. Plant Mol Biol. 2001, 45: 41-49. 10.1023/A:1006402308365.
Article
CAS
Google Scholar
Jia H, Pang Y, Chen X, Fang R: Removal of the selectable marker gene from transgenic tobacco plants by expression of Cre recombinase from a tobacco mosaic virus vector through agroinfection. Transgenic Res. 2006, 15: 375-384. 10.1007/s11248-006-0011-6.
Article
CAS
Google Scholar
Kopertekh L, Schiemann J: Agroinfiltration as a tool for transient expression of cre recombinase in vivo. Transgenic Res. 2005, 14: 793-798. 10.1007/s11248-005-8293-7.
Article
CAS
Google Scholar
Ow DW: Site-Specific Recombination for Plant Genetic Engineering: Strategy for Agro-Mediated Gene Stacking. ISHS Acta Horticulturae 738, International Symposium on Biotechnology of Temperate Fruit Crops and Tropical Species: Mar31, 2007; The Netherlands, Drukkerij Jansen BV. Edited by: Litz RE, Scorza R. 2007, 117-127.
Google Scholar
Albert H, Dale EC, Lee E, Ow DW: Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J. 1995, 7: 649-659. 10.1046/j.1365-313X.1995.7040649.x.
Article
CAS
Google Scholar
Choi S, Begum D, Koshinsky H, Ow DW, Wing RA: A new approach for the identification and cloning of genes: the pBACwich system using Cre/lox site-specific recombination. Nucleic Acids Res. 2000, 28: E19-10.1093/nar/28.7.e19.
Article
CAS
Google Scholar
Day CD, Lee E, Kobayashi J, Holappa LD, Albert H, Ow DW: Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes Dev. 2000, 14: 2869-2880. 10.1101/gad.849600.
Article
CAS
Google Scholar
Nanto K, Yamada-Watanabe K, Ebinuma H: Agrobacterium -mediated RMCE approach for gene replacement. Plant Biotechnol J. 2005, 3: 203-214. 10.1111/j.1467-7652.2005.00118.x.
Article
CAS
Google Scholar
Nanto K, Ebinuma H: Marker-free site-specific integration plants. Transgenic Res. 2008, 17: 337-344. 10.1007/s11248-007-9106-y.
Article
CAS
Google Scholar
Srivastava V, Ow DW: Biolistic mediated site-specific integration in rice. Molecular Breeding. 2002, 8: 345-350. 10.1023/A:1015229015022.
Article
Google Scholar
Srivastava V, Ariza-Nieto M, Wilson AJ: Cre-mediated site-specific gene integration for consistent transgene expression in rice. Plant Biotech J. 2004, 2: 169-179. 10.1111/j.1467-7652.2003.00061.x.
Article
CAS
Google Scholar
Vergunst AC, Hooykaas PJ: Cre/lox-mediated site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana by transient expression of cre. Plant Mol Biol. 1998, 38: 393-406. 10.1023/A:1006024500008.
Article
CAS
Google Scholar
Vergunst AC, Jansen LE, Hooykaas PJ: Site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana mediated by Cre recombinase. Nucleic Acids Res. 1998, 26: 2729-2734. 10.1093/nar/26.11.2729.
Article
CAS
Google Scholar
Belteki G, Gertsenstein M, Ow DW, Nagy A: Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat Biotechnol. 2003, 21: 321-324. 10.1038/nbt787.
Article
CAS
Google Scholar
Thyagarajan B, Olivares EC, Hollis RP, Ginsburg DS, Calos MP: Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol. 2001, 21 (12): 3926-3934. 10.1128/MCB.21.12.3926-3934.2001.
Article
CAS
Google Scholar
Thyagarajan B, Guimarães MJ, Groth AC, Calos MP: Mammalian genomes contain active recombinase recognition sites. Gene. 2000, 244 (1-2): 47-54. 10.1016/S0378-1119(00)00008-1.
Article
CAS
Google Scholar
Chalberg TW, Portlock JL, Olivarer EC, Thyagarajan B, Kirby PJ, Hillman RT, Hoelters J, Calos MP: Integration specificity of phage phiC31 integrase in the human genome. J Mol Bio. 2006, 357: 28-48. 10.1016/j.jmb.2005.11.098.
Article
CAS
Google Scholar
Ou HL, Huang Y, Qu LJ, Xu M, Yan JB, Ren ZR, Huang SZ, Zeng YT: A phiC31 integrase-mediated hotspot in favor of transgene expression exists in bovine genome. FEBS J. 2009, 276: 155-63. 10.1111/j.1742-4658.2008.06762.x.
Article
CAS
Google Scholar
Clough SJ, Bent AF: Floral dip: a simplified method for Agrobacterium - mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16: 735-743. 10.1046/j.1365-313x.1998.00343.x.
Article
CAS
Google Scholar
Sambrook J, Russell DW: Southern Blot Hybridization. Molecular Cloning A Laboratory Manual. Edited by: Argentine J. 2001, NewYork: Cold Spring Harbor Press, 6.33-6.46. 3
Google Scholar