Working PK, Lin A, Borellini F. Meeting product development challenges in manufacturing clinical grade oncolytic adenoviruses. Oncogene. 2005;24(52):7792–801.
Article
CAS
PubMed
Google Scholar
Yamaguchi T, Uchida E. Regulatory aspects of oncolytic virus products. Curr Cancer Drug Targets. 2007;7(2):203–8.
Article
CAS
PubMed
Google Scholar
Akerblom A, Bergvall P. Constraints on vaccine production. BioProcess Int. 2012:64–6 http://www.bioprocessintl.com/wp-content/uploads/2014/05/BPI_A_121007AR23_O_182745a.pdf.
Husain SR, Han J, Au P, Shannon K, Puri RK. Gene therapy for cancer: regulatory considerations for approval. Cancer Gene Ther. 2015;22(12):554–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Segura MM, Kamen AA, Garnier A. Overview of current scalable methods for purification of viral vectors. Methods Mol Biol. 2011;737:89–116.
Article
CAS
PubMed
Google Scholar
Lusky M. Good manufacturing practice production of adenoviral vectors for clinical trials. Hum Gene Ther. 2005;16(3):281–91.
Article
CAS
PubMed
Google Scholar
Altaras NE, Aunins JG, Evans RK, Kamen A, Konz JO, Wolf JJ. Production and formulation of adenovirus vectors. Adv Biochem Eng Biotechnol. 2005;99:193–260.
CAS
PubMed
Google Scholar
Moleirinho MG, Rosa S, Carrondo MJT, Silva RJS, Hagner-McWhirter Å, Ahlén G, Lundgren M, Alves PM, Peixoto C. Clinical-grade Oncolytic adenovirus purification using Polysorbate 20 as an alternative for cell Lysis. Curr Gene Ther. 2018;18(6):366–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
James KT, Cooney B, Agopsowicz K, Trevors MA, Mohamed A, Stoltz D, Hitt M, Shmulevitz M. Novel high-throughput approach for purification of infectious Virions. Sci Rep. 2016;6:36826.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clément N, Grieger JC. Manufacturing of recombinant adeno-associated viral vectors for clinical trials. Mol Ther Methods Clin Dev. 2016;3:16002.
Article
PubMed
PubMed Central
Google Scholar
Penaud-Budloo M, François A, Clément N, Ayuso E. Pharmacology of recombinant Adeno-associated virus production. Mol Ther Methods Clin Dev. 2018;8:166–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Merten OW, Hebben M, Bovolenta C. Production of lentiviral vectors. Mol Ther Methods Clin Dev. 2016;3:16017.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schweizer M, Merten OW. Large-scale production means for the manufacturing of lentiviral vectors. Curr Gene Ther. 2010;10(6):474–86.
Article
CAS
PubMed
Google Scholar
Segura MM, Kamen A, Garnier A. Downstream processing of oncoretroviral and lentiviral gene therapy vectors. Biotechnol Adv. 2006;24(3):321–37.
Article
PubMed
CAS
Google Scholar
Jiang C, Glorioso JC, Ataai M: Presence of imidazole in loading buffer prevents formation of free radical in immobilized metal affinity chromatography and dramatically improves the recovery of herpes simplex virus type 1 gene therapy vectors. J Chromatogr A 2006, 1121(1):40–45.
Jiang C, Wechuck JB, Goins WF, Krisky DM, Wolfe D, Ataai MM, Glorioso JC. Immobilized cobalt affinity chromatography provides a novel, efficient method for herpes simplex virus type 1 gene vector purification. J Virol. 2004;78(17):8994–9006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolff MW, Siewert C, Hansen SP, Faber R, Reichl U. Purification of cell culture-derived modified vaccinia Ankara virus by pseudo-affinity membrane adsorbers and hydrophobic interaction chromatography. Biotechnol Bioeng. 2010;107(2):312–20.
Article
CAS
PubMed
Google Scholar
Wolff MW, Siewert C, Lehmann S, Hansen SP, Djurup R, Faber R, Reichl U. Capturing of cell culture-derived modified Vaccinia Ankara virus by ion exchange and pseudo-affinity membrane adsorbers. Biotechnol Bioeng. 2010;105(4):761–9.
CAS
PubMed
Google Scholar
Zhao M, Vandersluis M, Stout J, Haupts U, Sanders M, Jacquemart R. Affinity chromatography for vaccines manufacturing: finally ready for prime time? Vaccine. 2018;37:5491–503.
Article
PubMed
CAS
Google Scholar
Ungerechts G, Bossow S, Leuchs B, Holm PS, Rommelaere J, Coffey M, Coffin R, Bell J, Nettelbeck DM. Moving oncolytic viruses into the clinic: clinical-grade production, purification, and characterization of diverse oncolytic viruses. Mol Ther Methods Clin Dev. 2016;3:16018.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hou Y, Brower M, Pollard D, Kanani D, Jacquemart R, Kachuik B, Stout J. Advective hydrogel membrane chromatography for monoclonal antibody purification in bioprocessing. Biotechnol Prog. 2015;31(4):974–82.
Article
CAS
PubMed
Google Scholar
Jacquemart R, Vandersluis M, Zhao M, Sukhija K, Sidhu N, Stout J. A single-use strategy to enable manufacturing of affordable biologics. Comput Struct Biotechnol J. 2016;14:309–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sviben D, Forcic D, Ivancic-Jelecki J, Halassy B, Brgles M. Recovery of infective virus particles in ion-exchange and hydrophobic interaction monolith chromatography is influenced by particle charge and total-to-infective particle ratio. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1054:10–9.
Article
CAS
PubMed
Google Scholar
Li H, Yang Y, Zhang Y, Zhang S, Zhao Q, Zhu Y, Zou X, Yu M, Ma G, Su Z. A hydrophobic interaction chromatography strategy for purification of inactivated foot-and-mouth disease virus. Protein Expr Purif. 2015;113:23–9.
Article
CAS
PubMed
Google Scholar
Weigel T, Soliman R, Wolff MW, Reichl U. Hydrophobic-interaction chromatography for purification of influenza a and B virus. J Chromatogr B Analyt Technol Biomed Life Sci. 2019;1117:103–17.
Article
CAS
PubMed
Google Scholar
Nestola P, Peixoto C, Silva RR, Alves PM, Mota JP, Carrondo MJ. Improved virus purification processes for vaccines and gene therapy. Biotechnol Bioeng. 2015;112(5):843–57.
Article
CAS
PubMed
Google Scholar
Moleirinho MG, Silva RJS, Alves PM, Carrondo MJT, Peixoto C. Current challenges in biotherapeutic particles manufacturing. Expert Opin Biol Ther. 2019;20:1–15.
Google Scholar
Tayeb S, Zakay-Rones Z, Panet A. Therapeutic potential of oncolytic Newcastle disease virus: a critical review. Oncolytic Virother. 2015;4:49–62.
CAS
PubMed
PubMed Central
Google Scholar
Zhao L, Liu H. Newcastle disease virus: a promising agent for tumour immunotherapy. Clin Exp Pharmacol Physiol. 2012;39(8):725–30.
Article
CAS
PubMed
Google Scholar
Ahlert T, Schirrmacher V. Isolation of a human melanoma adapted Newcastle disease virus mutant with highly selective replication patterns. Cancer Res. 1990;50(18):5962–8.
CAS
PubMed
Google Scholar
Fiola C, Peeters B, Fournier P, Arnold A, Bucur M, Schirrmacher V. Tumor selective replication of Newcastle disease virus: association with defects of tumor cells in antiviral defence. Int J Cancer. 2006;119(2):328–38.
Article
CAS
PubMed
Google Scholar
Krishnamurthy S, Takimoto T, Scroggs RA, Portner A. Differentially regulated interferon response determines the outcome of Newcastle disease virus infection in normal and tumor cell lines. J Virol. 2006;80(11):5145–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mansour M, Palese P, Zamarin D. Oncolytic specificity of Newcastle disease virus is mediated by selectivity for apoptosis-resistant cells. J Virol. 2011;85(12):6015–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas C, Ertel C, Gerhards R, Schirrmacher V. Introduction of adhesive and costimulatory immune functions into tumor cells by infection with Newcastle disease virus. Int J Oncol. 1998;13(6):1105–15.
CAS
PubMed
Google Scholar
Washburn B, Schirrmacher V. Human tumor cell infection by Newcastle disease virus leads to upregulation of HLA and cell adhesion molecules and to induction of interferons, chemokines and finally apoptosis. Int J Oncol. 2002;21(1):85–93.
CAS
PubMed
Google Scholar
Koks CA, Garg AD, Ehrhardt M, Riva M, Vandenberk L, Boon L, De Vleeschouwer S, Agostinis P, Graf N, Van Gool SW. Newcastle disease virotherapy induces long-term survival and tumor-specific immune memory in orthotopic glioma through the induction of immunogenic cell death. Int J Cancer. 2015;136(5):E313–25.
Article
CAS
PubMed
Google Scholar
Ricca JM, Oseledchyk A, Walther T, Liu C, Mangarin L, Merghoub T, Wolchok JD, Zamarin D. Pre-existing immunity to Oncolytic virus potentiates its immunotherapeutic efficacy. Mol Ther. 2018;26(4):1008–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zamarin D, Holmgaard RB, Ricca J, Plitt T, Palese P, Sharma P, Merghoub T, Wolchok JD, Allison JP. Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity. Nat Commun. 2017;8:14340.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zamarin D, Holmgaard RB, Subudhi SK, Park JS, Mansour M, Palese P, Merghoub T, Wolchok JD, Allison JP. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med. 2014;6(226):226ra232.
Article
CAS
Google Scholar
Schirrmacher V. Fifty years of clinical application of newcastle disease virus: time to celebrate! Biomedicines. 2016;4(3):16.
Article
PubMed Central
Google Scholar
Hotte SJ, Lorence RM, Hirte HW, Polawski SR, Bamat MK, O'Neil JD, Roberts MS, Groene WS, Major PP. An optimized clinical regimen for the oncolytic virus PV701. Clin Cancer Res. 2007;13(3):977–85.
Article
CAS
PubMed
Google Scholar
Lam HY, Yeap SK, Rasoli M, Omar AR, Yusoff K, Suraini AA, Alitheen NB. Safety and clinical usage of Newcastle disease virus in cancer therapy. J Biomed Biotechnol. 2011;2011:718710.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lorence RM, Pecora AL, Major PP, Hotte SJ, Laurie SA, Roberts MS, Groene WS, Bamat MK. Overview of phase I studies of intravenous administration of PV701, an oncolytic virus. Curr Opin Mol Ther. 2003;5(6):618–24.
CAS
PubMed
Google Scholar
Schirrmacher V. Oncolytic Newcastle disease virus as a prospective anti-cancer therapy. A biologic agent with potential to break therapy resistance. Expert Opin Biol Ther. 2015;15(12):1757–71.
Article
CAS
PubMed
Google Scholar
McGinnes LW, Pantua H, Reitter J, Morrison TG. Newcastle disease virus: propagation, quantification, and storage. Curr Protoc Microbiol. 2006;15:12.
Google Scholar
DiNapoli JM, Yang L, Suguitan A, Elankumaran S, Dorward DW, Murphy BR, Samal SK, Collins PL, Bukreyev A. Immunization of primates with a Newcastle disease virus-vectored vaccine via the respiratory tract induces a high titer of serum neutralizing antibodies against highly pathogenic avian influenza virus. J Virol. 2007;81(21):11560–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Samson ACR. Newcastle Disease, vol. 8. USA: Springer; 1988. https://doi.org/10.1007/978-1-4613-1759-3.
Langfield KK, Walker HJ, Gregory LC, Federspiel MJ. Manufacture of measles viruses. Methods Mol Biol. 2011;737:345–66.
Article
CAS
PubMed
Google Scholar
Freeman AI, Zakay-Rones Z, Gomori JM, Linetsky E, Rasooly L, Greenbaum E, Rozenman-Yair S, Panet A, Libson E, Irving CS, et al. Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma multiforme. Mol Ther. 2006;13(1):221–8.
Article
CAS
PubMed
Google Scholar
Ren X, Xue C, Kong Q, Zhang C, Bi Y, Cao Y. Proteomic analysis of purified Newcastle disease virus particles. Proteome Sci. 2012;10(1):32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Linde AM, Munir M, Zohari S, Ståhl K, Baule C, Renström L, Berg M. Complete genome characterisation of a Newcastle disease virus isolated during an outbreak in Sweden in 1997. Virus Genes. 2010;41(2):165–73.
Article
CAS
PubMed
Google Scholar
Vajda J, Weber D, Brekel D, Hundt B, Müller E. Size distribution analysis of influenza virus particles using size exclusion chromatography. J Chromatogr A. 2016;1465:117–25.
Article
CAS
PubMed
Google Scholar
Iyer G, Ramaswamy S, Cheng KS, Sisowath N, Mehta U, Leahy A, Chung F, Asher D. Flow-through purification of viruses- a novel approach to vaccine purification. Procedia Vaccinol. 2012;6:106–12.
Article
CAS
Google Scholar
Michen B, Graule T. Isoelectric points of viruses. J Appl Microbiol. 2010;109(2):388–97.
CAS
PubMed
Google Scholar
Vandersluis M, Jacquemart R, Zhao M, Stout JG, Wootton S. Achieving intensification and flexibility in virus purification with next-generation chromatography tools; 2017. p. 39–44.
Google Scholar
Santry LA, McAusland TM, Susta L, Wood GA, Major PP, Petrik JJ, Bridle BW, Wootton SK. Production and purification of high-titer Newcastle disease virus for use in preclinical mouse models of Cancer. Mol Ther Methods Clin Dev. 2018;9:181–91.
Article
CAS
PubMed
Google Scholar
Thomassen YE, van t’ Oever AG, Vinke M, Spiekstra A, Wijffels RH, van der Pol LA, Bakker WA. Scale-down of the inactivated polio vaccine production process. Biotechnol Bioeng. 2013;110(5):1354–65.
Article
CAS
PubMed
Google Scholar
Eglon MN, Duffy AM, O’Brien T, Strappe PM. Purification of adenoviral vectors by combined anion exchange and gel filtration chromatography. J Gene Med. 2009;11(11):978–89.
Article
CAS
PubMed
Google Scholar
Hahn TJ, Webb B, Kutney J, Fis E, Nidel N, Wong J, Jendrek D, Smith GE. Rapid manufacture and release of a GMP batch of Zaire Ebolavirus glycoprotein vaccine made using recombinant Baculovirus-Sf9 insect cell culture technology. BioProcess J. 2015;14:6–15.
Article
Google Scholar
Hahn TJ, Courbron D, Hamer M, Masoud M, Wong J, Taylor K, Hatch J, Sowers M, Shane E, Nathan M, Jiang H, Wei Z, Higgins J, Roh K, Burd J, Chinchilla-Olszar D, Malou-Williams M, Baskind DP, Smith GE. Rapid manufacture and release of a gmp batch of avian influenza a(h7n9) virus-like particle vaccine made using recombinant baculovirus-sf9 insect cell culture technology. BioProcess J. 2013;12:4–17.
Article
CAS
Google Scholar
Ramakrishnan MA. Determination of 50% endpoint titer using a simple formula. World J Virol. 2016;5(2):85–6.
Article
PubMed
PubMed Central
Google Scholar