Merino ST, Cherry J. Progress and challenges in enzyme development for biomass utilization. Adv Biochem Engin/Biotechnol. 2007;108:95–120.
Article
CAS
Google Scholar
Coughlan MP, Hazlewood GP. beta-1,4-D-Xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol Appl Biochem. 1993;17:259–89.
CAS
Google Scholar
Selig MJ, Adney WS, Himmel ME, Decker SR. The impact of cell wall acetylation on corn stover hydrolysis by cellulolytic and xylanolytic enzymes. Cellulose. 2009;16:711–22.
Article
CAS
Google Scholar
Biely P. Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnol Adv. 2012;30:1575–88.
Article
CAS
Google Scholar
Neumüller KG, Streekstra H, Gruppen H, Schols HA. Trichoderma longibrachiatum acetyl xylan esterase 1 enhances hemicellulolytic preparations to degrade corn silage polysaccharides. Bioresour Technol. 2014;163:64–73.
Article
Google Scholar
Poutanen K, Rättö M, Puls J, Viikari L. Evaluation of different microbial xylanolytic system. J Biotechnol. 1987;6:49–60.
Article
CAS
Google Scholar
Grohmann K, Mitchell DJ, Himmel ME, Dale BE, Schroeder HA. The role of ester groups in resistance of plant cell wall polysaccharides to enzymatic hydrolysis. Appl Biochem and Biotechnol. 1989;20:45–61.
Article
Google Scholar
Cybinski DH, Layton I, Lowry JB, Dalrymple BP. An acetylxylan esterase and a xylanase expressed from genes cloned from the ruminal fungus Neocallimastix pareiciarum act synergistically to degrade acetylated xylans. Appl Microbiol Biotechnol. 1999;52:221–5.
Article
CAS
Google Scholar
Tong X, Lange L, Grell MN, Busk PK. Hydrolysis of wheat arabinoxylan by two acetyl xylan esterases from Chaetomium thermophilum. Appl Biochem Biotechnol. 2015;175:1139–52.
Article
CAS
Google Scholar
Zhang JH, Siika-aho M, Tenkanen M, Viikari L. The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed. Biotechnol Biofuels. 2011;4:60.
Article
CAS
Google Scholar
Tomme P, Warren RAJ, Gilkes NR. Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol. 1995;37:1–81.
Article
CAS
Google Scholar
Várnai A, Mäkelä MR, Djajadi DT, Rahikainen J, Hatakka A, Viikari L. Carbohydrate-binding modules of fungal cellulases: occurrence in nature, function, and relevance in industrial biomass conversion. Adv Appl Microbiol. 2014;88:103–65.
Article
Google Scholar
Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J. 2004;382:769–81.
Article
CAS
Google Scholar
Lim S, Chundawat SPS, Fox BG. Expression, purification and characterization of a functional carbohydrate-binding module from Streptomyces sp. SirexAA-E Protein Expr Purif. 2014;98:1–9.
Article
CAS
Google Scholar
Guillen D, Sanchez S, Rodriguez-Sanoja R. Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol. 2010;85(5):1241–9.
Article
CAS
Google Scholar
Abbott DW, Boraston AB. Quantitative approaches to the analysis of carbohydrate-binding module function. Methods Enzymol. 2012;510:211–31.
Article
CAS
Google Scholar
Várnai A, Siika-aho M, Viikari L. Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs. Biotechnol Biofuels. 2013;6:30.
Article
Google Scholar
Gunnarsson LC, Zhou Q, Montanier C, Karlsson EN, Brumer III H, Ohlin M. Engineered xyloglucan specificity in a carbohydrate-binding module. Glycobiology. 2006;16(12):1171–80.
Article
CAS
Google Scholar
Fernandes AC, Fontes CMGA, Gilbert FHJ, Hazlewood GP, Fernandes TH, Ferreira LMA. Homologous xylanases from Clostridium thermocellum: evidence for bi-functional activity, synergism between xylanase catalytic modules and the presence of xylan-binding domains in enzyme complexes. Biochem J. 1999;342(1):105–10.
CAS
Google Scholar
Xie H, Gilbert HJ, Charnock SJ, Davies GJ, Williamson MP, Simpson PJ, Raghothama S, Fontes CMGA, Dias FMV, Ferreira LMA, Bolam DN. Clostridium thermocellum Xyn10B carbohydrate-binding module 22–2: the role of conserved amino acids in ligand binding. Biochemistry. 2001;40(31):9167–76.
Article
CAS
Google Scholar
Xu GY, Ong E, Gilkes NR, Kilburn DG, Muhandiram DR, Harris-Brandts M, Carver JP, Kay LE, Harvey TS. Solution structure of a cellulose-binding domain from Cellulomonas fimi by nuclear magnetic resonance spectroscopy. Biochemistry. 1995;34:6993–7009.
Article
CAS
Google Scholar
Tomme P, Creagh AL, Kilburn DG, Haynes CA. Interaction of polysaccharides with the N-terminal cellulose-binding domain of Cellulomonas fimi CenC. 1. Binding specificity and calorimetric analysis. Biochemistry. 1996;35:13885–94.
Article
CAS
Google Scholar
Simpson PJ, Bolam DN, Cooper A, Ciruela A, Hazlewood GP, Gilbert HJ, Williamson MP. A family IIb xylan-binding domain has a similar secondary structure to a homologous family IIa cellulose-binding domain but different ligand specificity. Structure. 1999;7:853–64.
Article
CAS
Google Scholar
Stoll D, Boraston A, Stalbrand H, McLean BW, Kilburn DG, Warren RAJ. Mannanase Man26A from Cellulomonas fimi has a mannan-binding module. FEMS Microbiol Lett. 2000;183:265–9.
Article
CAS
Google Scholar
Hall J, Black GW, Ferreira LMA, Millward-Sadler SJ, Ali BRS, Hazlewood GP, Gilbert HJ. The non-catalytic cellulose-binding domain of a novel cellulase from Pseudomonas fluorescens subsp. cellulosa is important for the efficient hydrolysis of Avicel. Biochem J. 1995;309:749–56.
Article
CAS
Google Scholar
Jamal-Talabani S, Boraston AB, Turkenburg JP, Tarbouriech N, Ducros VMA, Davies GJ. Ab initio structure determination and functional characterization of CBM36: a new family of calcium-dependent carbohydrate binding modules. Structure. 2004;12(7):1177–87.
Article
CAS
Google Scholar
Montanier C, Bueren AL, Dumon C, Flint JE, Correia MA, Prates JA, Firbank SJ, Lewis RJ. Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function. Proc Natl Acad Sci U S A. 2009;106(9):3065–70.
Article
CAS
Google Scholar
Cuskin F, Flint JE, Gloster TM, Morland C, Baslé A, Henrissat B, Coutinho PM, Strazzulli A, Solovyova AS, Davies GJ, Gilbert HJ. How nature can exploit nonspecific catalytic and carbohydrate binding modules to create enzymatic specificity. Proc Natl Acad Sci U S A. 2012;109(51):20889–94.
Article
CAS
Google Scholar
Gao D, Chundawat SPS, Sethi A, Balan V, Gnanakaran S, Dale BE. Increased enzyme binding to substrate is not necessary for more efficient cellulose hydrolysis. Proc Natl Acad Sci U S A. 2013;110(27):10922–7.
Article
CAS
Google Scholar
Puchart V, Berrin JG, Haon M, Biely P. A unique CE16 acetyl esterase from Podospora anserina active on polymeric xylan. Appl Microbiol Biotechnol. 2015;99:10515–26.
Article
CAS
Google Scholar
Song WX, Han XL, Qian YC, Liu GD, Yao GS, Zhong YH, Qu YB. Proteomic analysis of the biomass hydrolytic potentials of Penicillium oxalicum lignocellulolytic enzyme system. Biotechnol Biofuels. 2016;9:68.
Article
Google Scholar
Hervéa C, Rogowskib A, Blakea AW, Marcusa SE, Gilbertb HJ, Knoxa JP. Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc Natl Acad Sci U S A. 2010;107(34):15293–8.
Article
Google Scholar
Walker JA, Takasuka TE, Deng K, Bianchetti CM, Udell HS, Prom BM, Kim H, Adams PD, Northen TR, Fox BG. Multifunctional cellulase catalysis targeted by fusion to different carbohydrate-binding modules. Biotechnol Biofuels. 2015;21(8):220.
Article
Google Scholar
Kim TW, Chokhawala HA, Nadler D, Blanch HW, Clark DS. Binding modules alter the activity of chimeric cellulases: effects of biomass pretreatment and enzyme source. Biotechnol Bioeng. 2010;107(4):601–11.
Article
CAS
Google Scholar
Telke AA, Ghatge SS, Kang SH, Thangapandian S, Lee KW, Shin HD, Um Y, Kim SW. Construction and characterization of chimeric cellulases with enhanced catalytic activity towards insoluble cellulosic substrates. Bioresour Technol. 2012;112:10–7.
Article
CAS
Google Scholar
Reyes-Ortiz V, Heins RA, Cheng G, Kim EY, Vernon BC, Elandt RB, Adams PD, Sale KL, Hadi MZ, Simmons BA, Kent MS, Tullman-Ercek D. Addition of a carbohydrate-binding module enhances cellulase penetration into cellulose substrates. Biotechnol Biofuels. 2013;6(1):93.
Article
CAS
Google Scholar
Inoue H, Kishishita S, Kumagai A, Kataoka M, Fujii T, Ishikawa K. Contribution of a family 1 carbohydrate-binding module in thermostable glycoside hydrolase 10 xylanase from Talaromyces cellulolyticus toward synergistic enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels. 2015;8:77.
Article
Google Scholar
Meng DD, Ying Y, Chen XH, Lu M, Ning K, Wang LS, Li FL. Distinct roles for carbohydrate-binding modules of glycoside hydrolase 10 (GH10) and GH11 xylanases from Caldicellulosiruptor sp. strain F32 in thermostability and catalytic efficiency. Appl Environ Microbiol. 2015;81(6):2006–14.
Article
CAS
Google Scholar
Ding SJ, Cao J, Zhou R, Zheng F. Molecular cloning, and characterization of a modular acetyl xylan esterase from the edible straw mushroom Volvariella volvacea. FEMS Microbiol Lett. 2007;274(2):304–10.
Article
CAS
Google Scholar
Gunnarsson LC, Montanier C, Tunnicliffe RB, Williamson MP, Gilbert HJ, Karlsson EN, Ohlin M. Novel xylan-binding properties of an engineered family 4 carbohydrate-binding module. Biochem J. 2007;406:209–14.
Article
Google Scholar
Czjzek M, Bolam DN, Mosbah A, Allouch J, Fontes CM, Ferreira LM, Bornet O, Zamboni V, Darbon H, Smith NL, Black GW, Henrissat B, Gilbert HJ. The location of the ligand-binding site of carbohydrate-binding modules that have evolved from a common sequence is not conserved. J Biol Chem. 2001;276(51):48580–7.
CAS
Google Scholar
Charnock SJ, Bolam DN, Turkenburg JP, Gilbert HJ, Ferreira LMA, Davies GJ, Fontes CMGA. The X6 “thermostabilizing” domains of xylanases are carbohydrate-binding modules: structure and biochemistry of the Clostridium thermocellum X6b domain. Biochemistry. 2000;39:5013–21.
Article
CAS
Google Scholar
Abou Hachem M, Nordberg Karlsson E, Bartonek-Roxå E, Raghothama S, Simpson PJ, Gilbert HJ, Williamson MP, Holst O. Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase : cloning, expression and binding studies. Biochem J. 2000;345:53–60.
Article
CAS
Google Scholar
Fontes CMGA, Hazlewood GP, Morag E, Hall J, Hirst BH, Gilbert HJ. Evidence for a general role for non-catalytic thermostabilizing domains in xylanases from thermophilic bacteria. Biochem J. 1995;307:151–8.
Article
CAS
Google Scholar
Koseki T, Mochizuki K, Kisara H, Miyanaga A, Fushinobu S, Murayama T, Shiono Y. Characterization of a chimeric enzyme comprising feruloyl esterase and family 42 carbohydrate-binding module. Appl Microbiol Biotechnol. 2010;86:155–61.
Article
CAS
Google Scholar
Voutilainen SP, Rantala-Nurmi S, Penttilä M, Koivula A. Engineering chimeric thermostable GH7 cellobiohydrolases in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2014;98(7):2991–3001.
Article
CAS
Google Scholar
Viikari L, Alapuranen M, Puranen T, Vehmaanpera J. Thermostable enzymes in lignocellulose hydrolysis. Adv Biochem Eng Biotechnol. 2007;108:121–45.
CAS
Google Scholar
Khana MIM, Sajjada M, Sadafb S, Zafarc R, Niazid UHK, Akhtar MW. The nature of the carbohydrate binding module determines thecatalytic efficiency of xylanase Z of Clostridium thermocellum. J Biotechnol. 2013;168:403–8.
Article
Google Scholar
Hildén L, Daniel G, Johansson G. Use of a fluorescence labelled, carbohydrate-binding module from Phanerochaete chrysosporium Cel7D for studying wood cell wall ultrastructure. Biotechnol Lett. 2003;25:553–8.
Article
Google Scholar
Simpson PJ, Jamieson SJ, Hachem MA, Karlsson EN, Gilbert HJ, Holst O, Williamson MP. The solution structure of the CBM4-2 carbohydrate binding module from a thermostable Rhodothermus marinus xylanase. Biochemistry. 2002;41(18):5712–9.
Article
CAS
Google Scholar
McCartney L, Blake AW, Flint J, Bolam DN, Boraston AB, Gilbert HJ, Knox JP. Differential recognition of plant cell walls by microbial xylan-specific carbohydrate-binding modules. Proc Natl Acad Sci U S A. 2006;103(12):4765–70.
Article
CAS
Google Scholar
Mai-Gisondi G, Turunen O, Pastinen O, Pahimanolis N, Master ER. Enhancement of acetyl xylan esterase activity on cellulose acetate through fusion to a family 3 cellulose binding module. Enzyme Microb Technol. 2015;79–80:27–33.
Article
Google Scholar
Zheng F, Huang JX, Yin YH, Ding SJ. A novel neutral xylanase with high SDS resistance from Volvariella volvacea: characterization and its synergistic hydrolysis of wheat bran with acetyl xylan esterase. J Ind Microbiol Biotechnol. 2013;40(10):1083–93.
Article
CAS
Google Scholar
Selig MJ, Knoshaug EP, Adney WS, Himmel ME, Decker SR. Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities. Bioresour Technol. 2008;99:4997–5005.
Article
CAS
Google Scholar
Tian B, Chen Y, Ding SJ. A combined approach for improving alkaline acetyl xylan esterase production in Pichia pastoris, and effects of glycosylation on enzyme secretion, activity and stability. Protein Expr Purif. 2012;85:44–50.
Article
CAS
Google Scholar
Shao WL, Wiegel J. Purification and characterization of two acetyl xylan esterases from Thermoanaerobacterium sp. strain JW/SL-YS485. Appl Environ Microbiol. 1995;61:729–33.
CAS
Google Scholar
Wang P, Ge LH, Xia DA. Preparation of feruloylated oligosaccharides from wheat bran with xylanase hydrolysis. J Chin Cer Oils Assoc. 2008;23:152–6.
Google Scholar
Hagglund E, Lindberg B, Mcpherson J. Dimethylsulphoxide, a solvent for hemicelluloses. Acta Chem Scand. 1956;10:1160–4.
Article
Google Scholar
Saarnio J, Wathen K, Gustafsson C. Structure of an acidic xylan isolated from birch wood holocellulose. Acta Chem Scand. 1954;8:825–8.
Article
CAS
Google Scholar
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. Determination of structural carbohydrates and lignin in biomass. Golden: National Renewable Energy Laboratory. Technical Report NREL/TP-510e42618. 2008
Voragen AGJ, Schols HA, Pilnik W. Determination of the degree of methylation and acetylation of pectins by h.p.l.c. Food Hydrocoll. 1986;1:65–70.
Article
CAS
Google Scholar