Olkkonen VM, Stenmark H: Role of Rab GTPases in membrane traffic. Int Rev Cytol. 1997, 176: 1-85.
Article
CAS
Google Scholar
Wurmser AE, Emr SD: Phosphoinositide signaling and turnover: PtdIns(3)P, a regulator of membrane traffic, is transported to the vacuole and degraded by a process that requires lumenal vacuolar hydrolase activities. EMBO J. 1998, 17: 4930-4942.
Article
CAS
Google Scholar
Spang A: Vesicle transport: a close collaboration of Rabs and effectors. Curr Biol. 2004, 14: R33-R34.
Article
CAS
Google Scholar
Rothman JE: Intracellular membrane fusion. Adv Second Messenger Phosphoprotein Res. 1994, 29: 81-96.
Article
CAS
Google Scholar
Kabcenell AK, Goud B, Northup JK, Novick PJ: Binding and hydrolysis of guanine nucleotides by Sec4p, a yeast protein involved in the regulation of vesicular traffic. J Biol Chem. 1990, 265: 9366-9372.
CAS
Google Scholar
TerBush DR, Maurice T, Roth D, Novick P: The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 1996, 15: 6483-6494.
CAS
Google Scholar
Protopopov V, Govindan B, Novick P, Gerst JE: Homologs of the synaptobrevin/VAMP family of synaptic vesicle proteins function on the late secretory pathway in S. cerevisiae. Cell. 1993, 74: 855-861.
Article
CAS
Google Scholar
Katz L, Hanson PI, Heuser JE, Brennwald P: Genetic and morphological analyses reveal a critical interaction between the C-termini of two SNARE proteins and a parallel four helical arrangement for the exocytic SNARE complex. EMBO J. 1998, 17: 6200-6209.
Article
CAS
Google Scholar
Couve A, Gerst J: Yeast Snc proteins complex with Sec9. Functional interactions between putative SNARE proteins. J Biol Chem. 1994, 269 (38): 23391-23394.
CAS
Google Scholar
Rudolf R, Salm T, Rustom A, Gerdes HH: Dynamics of immature secretory granules: role of cytoskeletal elements during transport, cortical restriction, and F-actin-dependent tethering. Mol Biol Cell. 2001, 12: 1353-1365.
Article
CAS
Google Scholar
Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Söllner TH, Rothman JE: SNAREpins: minimal machinery for membrane fusion. Cell. 1998, 92 (6): 759-772.
Article
CAS
Google Scholar
Helenius A, Aebi M: Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem. 2004, 73: 1019-1049.
Article
CAS
Google Scholar
Spiro RG: Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology. 2002, 12 (4): 43R-56R.
Article
CAS
Google Scholar
Frand AR, Cuozzo JW, Kaiser CA: Pathways for protein disulphide bond formation. Trends Cell Biol. 2000, 10: 203-210.
Article
CAS
Google Scholar
Østergaard H, Tachibana C, Winther JR: Monitoring disulfide bond formation in the eukaryotic cytosol. J Cell Biol. 2004, 166: 337-345.
Article
Google Scholar
Hoepfner D, Schildknegt DM, Braakman I, Philippsen P, Tabak HF: Contribution of the Endoplasmic reticulum to the peroxisome formation. Cell. 2005, 122: 85-95.
Article
CAS
Google Scholar
Kikuchi M, Hatano N, Yokota S, Shimozawa N, Imanaka T, Taniguchi H: Proteomic analysis of rat liver peroxisome: presence of peroxisome-specific isozyme of Lon protease. J Biol Chem. 2004, 279: 421-428.
Article
CAS
Google Scholar
Walton PA, Hill PE, Subramani S: Import of stably folded proteins into peroxisomes. Mol Biol Cell. 1995, 6: 675-683.
Article
CAS
Google Scholar
Gould SG, Keller GA, Subramani S: Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J Cell Biol. 1987, 105: 2923-2931.
Article
CAS
Google Scholar
Swinkels BW, Gould SJ, Bodnar AG, Rachubinski RA, Subramani S: A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J. 1991, 10: 3255-3262.
CAS
Google Scholar
Subramani S: Components involved in peroxisome import, biogenesis, proliferation, turnover and movement. Physiological reviews. 1998, 78: 171-184.
CAS
Google Scholar
Brosius U, Dehmel T, Gartner J: Two different targeting signals direct human peroxisomal membrane protein 22 to peroxisomes. J Biol Chem. 2002, 277: 774-784.
Article
CAS
Google Scholar
Tugal HB, Pool M, Baker A: Arabidopsis 22-kilodalton peroxisomal membrane protein. Nucleotide sequence analysis and biochemical characterization. Plant Physiol. 1999, 120: 309-20.
Article
CAS
Google Scholar
Wendler F, Tooze S: Syntaxin 6: the promiscuous behaviour of a SNARE protein. Traffic. 2001, 2 (9): 606-611.
Article
CAS
Google Scholar
Hiltunen JK, Wenzel B, Beyer A, Erdmann R, Fosså A, Kunau WH: Peroxisomal multifunctional beta-oxidation protein of Saccharomyces cerevisiae. Molecular analysis of the fox2 gene and gene product. J Biol Chem. 1992, 267 (10): 6646-6653.
CAS
Google Scholar
Beers RF, Sizer IW: A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952, 195 (1): 133-140.
CAS
Google Scholar
Gurunathan S, Marash M, Weinberger A, Gerst JE: t-SNARE phosphorylation regulates endocytosis in yeast. Mol Biol Cell. 2002, 13 (5): 1594-1607.
Article
CAS
Google Scholar
Grote E, Baba M, Ohsumi Y, Novick PJ: Geranylgeranylated SNAREs Are Dominant Inhibitors of Membrane Fusion. J Cell Biol. 2000, 151: 453-466.
Article
CAS
Google Scholar
Marelli M, Smith JJ, Jung S, Yi E, Nesvizhskii AI, Christmas RH, Saleem RA, Tam YY, Fagarasanu A, Goodlett DR, Aebersold R, Rachubinski RA, Aitchison JD: Quantitative mass spectrometry reveals a role for the GTPase Rho1p in actin organization on the peroxisome membrane. J Cell Biol. 2004, 167: 1099-1112.
Article
CAS
Google Scholar
Hashimoto K, Igarashi H, Mano S, Nishimura M, Shimmen T, Yokota E: Peroxisomal localization of a myosin XI isoform in Arabidopsis thaliana. Plant Cell Physiol. 2005, 46: 782-789.
Article
CAS
Google Scholar
van Dijck PW, Selten GC, Hempenius RA: On the safety of a new generation of DSM Aspergillus niger enzyme production strains. Regul Toxicol Pharmacol. 2003, 38: 27-35.
Article
CAS
Google Scholar
Kelly JM, Hynes MJ: Transformation of Aspergillus niger by the amdS gene of Aspergillus nidulans. EMBO J. 1985, 4: 475-479.
CAS
Google Scholar
Waterham HR, Titorenko VI, Haima P, Cregg JM, Harder W, Veenhuis M: The Hansenula polymorpha PER1 gene is essential for peroxisome biogenesis and encodes a peroxisomal matrix protein with both carboxy- and amino-terminal targeting signals. J Cell Biol. 1994, 127 (3): 737-749.
Article
CAS
Google Scholar