Chater KF: Streptomyces inside-out: a new perspective on the bacteria that provide us with antibiotics. Philos Trans R Soc Lond B Biol Sci. 2006, 361 (1469): 761-768. 10.1098/rstb.2005.1758.
Article
CAS
Google Scholar
Baltz RH: Strain improvement in actinomycetes in the postgenomic era. J Ind Microbiol Biotech. 2011, 38 (6): 657-666. 10.1007/s10295-010-0934-z.
Article
CAS
Google Scholar
Baltz RH: Streptomyces temperate bacteriophage integration systems for stable genetic engineering of actinomycetes (and other organisms). J Ind Microbiol Biotech. 2012, 39 (5): 661-672. 10.1007/s10295-011-1069-6.
Article
CAS
Google Scholar
Boccard F, Smokvina T, Pernodet JL, Friedmann A, Guerineau M: Structural analysis of loci involved in pSAM2 site-specific integration in Streptomyces. Plasmid. 1989, 21 (1): 59-70. 10.1016/0147-619X(89)90087-5.
Article
CAS
Google Scholar
Smokvina T, Mazodier P, Boccard F, Thompson CJ, Guerineau M: Construction of a series of pSAM2-based integrative vectors for use in actinomycetes. Gene. 1990, 94 (1): 53-59. 10.1016/0378-1119(90)90467-6.
Article
CAS
Google Scholar
Bierman M, Logan R, O'Brien K, Seno ET, Rao RN, Schoner BE: Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene. 1992, 116 (1): 43-49. 10.1016/0378-1119(92)90627-2.
Article
CAS
Google Scholar
Kuhstoss S, Rao RN: Analysis of the integration function of the streptomycete bacteriophage φC31. J Mol Biol. 1991, 222 (4): 897-908. 10.1016/0022-2836(91)90584-S.
Article
CAS
Google Scholar
Kuhstoss S, Richardson MA, Rao RN: Plasmid cloning vectors that integrate site-specifically in Streptomyces spp. Gene. 1991, 97 (1): 143-146. 10.1016/0378-1119(91)90022-4.
Article
CAS
Google Scholar
Khaleel T, Younger E, McEwan AR, Varghese AS, Smith MCM: A phage protein that binds φC31 integrase to switch its directionality. Mol Microbiol. 2011, 80 (6): 1450-1463. 10.1111/j.1365-2958.2011.07696.x.
Article
CAS
Google Scholar
Lewis JA, Hatfull GF: Control of directionality in integrase-mediated recombination: examination of recombination directionality factors (RDFs) including Xis and Cox proteins. Nucl Acid Res. 2001, 29 (11): 2205-2216. 10.1093/nar/29.11.2205.
Article
CAS
Google Scholar
Brown WR, Lee NC, Xu Z, Smith MCM: Serine recombinases as tools for genome engineering. Methods. 2011, 53 (4): 372-379. 10.1016/j.ymeth.2010.12.031.
Article
CAS
Google Scholar
Gregory MA, Till R, Smith MCM: Integration site for Streptomyces phage ϕBT1 and the development of novel site-specific integrating vectors. J Bacteriol. 2003, 185 (17): 5320-5323. 10.1128/JB.185.17.5320-5323.2003.
Article
CAS
Google Scholar
Morita K, Yamamoto T, Fusada N, Komatsu M, Ikeda H, Hirano N, Takahashi H: The site-specific recombination system of actinophage TG1. FEMS Microbiol Lett. 2009, 297 (2): 234-240. 10.1111/j.1574-6968.2009.01683.x.
Article
CAS
Google Scholar
Stuttard C: Generalized transduction in Streptomyces species. Genetics and Molecular Biology of Industrial Microorganisms. Edited by: Hershberger CL, Queener SW, Hegeman G. 1989, Washington DC: Amercian Society of Microbiology, 157-162.
Google Scholar
Smith MCM, Hendrix RW, Dedrick R, Mitchell K, Ko CC, Russell D, Bell E, Gregory M, Bibb MJ, Pethick F, Jacobs-Sera D, Herron P, Buttner MJ, Hatfull G: Evolutionary relationships among actinophages and a putative adaptation for growth in Streptomyces spp. J Bacteriol. 2013, 195 (21): 4924-4935. 10.1128/JB.00618-13.
Article
CAS
Google Scholar
Hanssen A-M, Sollid JUE: SCCmec in staphylococci: genes on the move. FEMS Immunol Med Microbiol. 2005, 46: 8-20.
Article
Google Scholar
Xu Z, Thomas L, Davies B, Chalmers R, Smith MCM, Brown WRA: Accuracy and efficiency define Bxb1 integrase as the best of fifteen candidate serine recombinases for the integration of DNA into the human genome. BMC Biotech. 2013, 13: 87-10.1186/1472-6750-13-87.
Article
Google Scholar
Santos CN, Koffas M, Stephanopoulos G: Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab Eng. 2011, 13 (4): 392-400. 10.1016/j.ymben.2011.02.002.
Article
CAS
Google Scholar
Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O'Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K: Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature. 2002, 417 (6885): 141-147. 10.1038/417141a.
Article
Google Scholar
MacNeil DJ: Characterization of a unique methyl-specific restriction system in Streptomyces avermitilis. J Bacteriol. 1988, 170 (12): 5607-5612.
CAS
Google Scholar
Bedford DJ, Laity C, Buttner MJ: Two genes involved in the phase-variable ϕC31 resistance mechanism of Streptomyces coelicolor A3(2). J Bacteriol. 1995, 177 (16): 4681-4689.
CAS
Google Scholar
Floriano B, Bibb M: afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol. 1996, 21 (2): 385-396. 10.1046/j.1365-2958.1996.6491364.x.
Article
CAS
Google Scholar
Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S: Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol. 2003, 21 (5): 526-531. 10.1038/nbt820.
Article
Google Scholar
Pullan ST, Chandra G, Bibb MJ, Merrick M: Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes. BMC Genomics. 2011, 12: 175-10.1186/1471-2164-12-175.
Article
CAS
Google Scholar
Chater KF, Wilde LC: Streptomyces albus G mutants defective in the SalGI restriction-modification system. J Gen Microbiol. 1980, 116 (2): 323-334.
CAS
Google Scholar
Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA: Practical Streptomyces Genetics. 2000, Norwich: The John Innes Foundation
Google Scholar
Sambrook J, Russell DW: Molecular Cloning: A Laboratory manual. 2001, New York: Cold Spring Harbor Laboratory Press
Google Scholar