Howard RL, Abotsi E, Jansen van REL, Howard S: Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afric J Biotechnol. 2003, 2: 602-619.
Article
CAS
Google Scholar
Mansfield SD, Mooney C, Saddler JN: Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog. 1999, 15: 804-816. 10.1021/bp9900864.
Article
CAS
Google Scholar
Gessesse A, Mamo G: High level xylanase production by an alkalophilic Bacillus sp. by using solid state fermentation. Enzyme Microb Technol. 1999, 25: 68-72. 10.1016/S0141-0229(99)00006-X.
Article
CAS
Google Scholar
Hashemi M, Razavi SH, Shojaosadati SA, Mousavi SM, Khajeh K, Safari M: Development of a solid-state fermentation process for production of an alpha amylase with potentially interesting properties. J Biosci Bioeng. 2010, 110: 333-337. 10.1016/j.jbiosc.2010.03.005.
Article
CAS
Google Scholar
Ur Rehman H, Qader SAU, Aman A: Polygalacturonase: production of pectin depolymerising enzyme from bacillus licheniformis KIBGE IB-21. Carbohydr Polym. 2012, 90: 387-391. 10.1016/j.carbpol.2012.05.055.
Article
Google Scholar
Anuradha R, Suresh AK, Venkatesh KV: Simultaneous saccharification and fermentation of starch to lactic acid. Process Biochem. 1999, 35: 367-375. 10.1016/S0032-9592(99)00080-1.
Article
CAS
Google Scholar
Kapdan IK, Kargi F: Review biohydrogen production from waste materials. Enzyme Microb Technol. 2006, 38: 569-582. 10.1016/j.enzmictec.2005.09.015.
Article
CAS
Google Scholar
Sun Y, Cheng J: Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour Technol. 2002, 83: 1-11. 10.1016/S0960-8524(01)00212-7.
Article
CAS
Google Scholar
Bhat MK, Bhat S: Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv. 1997, 15: 583-620. 10.1016/S0734-9750(97)00006-2.
Article
CAS
Google Scholar
Beg QK, Kapoor M, Mahajan L, Hoondal GS: Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol. 2001, 56: 326-338. 10.1007/s002530100704.
Article
CAS
Google Scholar
Hoondal GS, Tiwari RP, Tiwari R, Dahiya N, Beg QK: Microbial alkaline pectinases and their industrial application: A review. Appl Microbiol Biotechnol. 2002, 59: 409-418. 10.1007/s00253-002-1061-1.
Article
CAS
Google Scholar
Sivaramakrishnan S, Gangadharan D, Nampoothiri KM, Soccol CR, Pandey A: Alpha-amylases from microbial sources—an overview on recent development. Food Technol Biotechnol. 2006, 44: 173-184.
CAS
Google Scholar
Lonsane BK, Ramesh MV: Production of bacterial thermostable α-amylase by solid-state fermentation: a potential tool for achieving economy in enzyme production and starch hydrolysis. Adv Appl Microbiol. 1990, 35: 1-56.
Article
CAS
Google Scholar
Pandey A: Recent process developments in solid-state fermentation. Process Biochem. 1992, 27: 109-117. 10.1016/0032-9592(92)80017-W.
Article
CAS
Google Scholar
Couto SR, Sanroman MA: Application of solid-state fermentation to food industry – a review. J Food Eng. 2005, 22: 211-219.
Google Scholar
Pandey A: Aspects of fermenter design for solid-state fermentations. Process Biochem. 1991, 26: 355-361. 10.1016/0032-9592(91)85026-K.
Article
CAS
Google Scholar
Sukumaran RK, Singhania RR, Mathew GM, Pandey A: Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energ. 2009, 34: 421-424. 10.1016/j.renene.2008.05.008.
Article
CAS
Google Scholar
Mohamed SA, Al-MalkiL AL, Khan JA, Kabli SA, Al-Garni SM: Solid state production of polygalacturonase and xylanase by Trichoderma species using cantaloupe and watermelon rinds. J Microbiol. 2013, 51: 605-611. 10.1007/s12275-013-3016-x.
Article
CAS
Google Scholar
Rahardjo YSP, Sie S, Weber FJ, Tramper J, Rinzema A: Effect of low oxygen concentrations on growth and α-amyase production of Aspergillus oryzae in model solid-state fermentation systems. Biomol Eng. 2005, 21: 163-172. 10.1016/j.bioeng.2005.01.001.
Article
CAS
Google Scholar
Ustok FI, Canan Tari C, Gogus N: Solid-state production of polygalacturonase by Aspergillus sojae ATCC 20235. J Biotechnol. 2007, 127: 322-334. 10.1016/j.jbiotec.2006.07.010.
Article
CAS
Google Scholar
Senthilkumar SR, Ashokkumar B, Raj KC, Gunasekaran P: Optimization of medium composition for alkali-stable xylanase production by Aspergillus fischeri Fxn 1 in solid-state fermentation using central composite rotary design. Bioresour Technol. 2005, 96: 1380-1386. 10.1016/j.biortech.2004.11.005.
Article
CAS
Google Scholar
Singh RK, Mishra SK, Kumar N: Optimization of α-amylase production on agriculture byproduct by Bacillus cereus MTCC 1305 using solid state fermentation. Res J Pharm Biol Chem Sci. 2010, 1: 867-876.
CAS
Google Scholar
Panwar D, Srivastava PK, Kapoor M: Production, extraction and characterization of alkaline xylanase from Bacillus sp. PKD-9 with potential for poultry feed. Biocatal Agric Biotechnol. 2014, 3: 118-125.
Google Scholar
Teather RM, Wood PJ: Use of congo red-polysaccharide interactions in enumeration and characterization of cellulytic bacteria from the bovine rumen. Appl Environ Microbiol. 1982, 43: 777-780.
CAS
Google Scholar
Bergey JG, Holt NR, Krieg PHA: Lippincott Williams. Bergey’s Manual of Determinative Bacteriology. 1994, 9, ISBN 0-683-00603-7
Google Scholar
Miller GL: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959, 31: 426-429. 10.1021/ac60147a030.
Article
CAS
Google Scholar
Dubois M, Gilles KA, Hamitton JK, Rebers PA, Smith F: Colorimeteric method for determination of sugars and related substances. Anal Chem. 1956, 28: 350-356. 10.1021/ac60111a017.
Article
CAS
Google Scholar
Rajashri DK, Anandrao RJ: Optimization and scale up of cellulase-free xylanase production in solid state fermentation on wheat bran by Cellulosimicrobium sp. MTCC 10645. Jordan J Biol Sci. 2012, 5: 289-294.
Google Scholar
Babu KR, Satyanarayana T: α-Amylase production by thermophilic Bacillus coagulans in solid-state fermentation. Process Biochem. 1995, 30: 305-309. 10.1016/0032-9592(95)87038-5.
Article
CAS
Google Scholar
Thiago LR, Kellaway RC: Botanical composition and extent of lignification affecting digestibility of wheat and oat straw and pastalum hay. Animal Feed Sci Technol. 1982, 7: 71-81. 10.1016/0377-8401(82)90038-4.
Article
Google Scholar
Mrudula S, Reddy G, Seenayya G: Effect of substrate and culture conditions on the production of amylase and pullulanase by thermophilic Clostridium thermosulforegenes SVM17 in solid state fermentation. Malays J Microbiol. 2011, 7: 19-25.
CAS
Google Scholar
Malathi S, Chakraborti R: Productions of alkaline protease by a new Aspergillus flavus isolate under solid sustrate fermentation conditions for use as a depilation agent. Appl Environ Microbiol. 1991, 57: 712-716.
CAS
Google Scholar
Unakal C, Kallur RI, Kaliwal BB: Production of α-amylase using banana waste by Bacillus subtilis under solid state fermentation. Eur J Exper Biol. 2012, 2: 1044-1052.
CAS
Google Scholar
Cordeiro CAM, Martins MLL, Luciano AB, da Silva RF: Production and properties of xylanase from Thermophilic Bacillus sp. Braz Arch Biol Technol. 2002, 45: 413-418. 10.1590/S1516-89132002000600002.
Article
CAS
Google Scholar
Ramesh MV, Lonsane BK: Critical importance of moisture content of the medium in α-amylase by Bacillus licheniformis M27 in a solid-state fermentation system. Appl Microbiol Biotechnol. 1990, 33: 501-505.
Article
CAS
Google Scholar
Kim JH, Hosobuchi M, Kishimoto M, Seki T, Ryu DDY: Cellulase production by a solidstate culture system. Biotechnol Bioeng. 1985, 27: 1445-1450. 10.1002/bit.260271008.
Article
CAS
Google Scholar
Nagendra PG, Chandrasekharan M: L-glutaminase production by marine Vibrio costicola under solid-state fermentation using different substrates. J Marine Biotechnol. 1996, 4: 176-179.
Google Scholar
Feniksova RV, Tikhomirova AS, Rakhleeva BE: Conditions for forming amylase and proteinase in surface culture of Bacillus subtilis. Mikrobiologia. 1960, 29: 745-748.
CAS
Google Scholar
Lonsane BK, Ghildyal NP, Budiatman S, Ramakrishna SV: Engineering aspects of solid state fermentation. Enzyme Microb Technol. 1985, 7: 258-265. 10.1016/0141-0229(85)90083-3.
Article
CAS
Google Scholar
Murad HA, Saleem MME: Utilization of uf-permeate for producing exopolysaccharides from lactic acid bacteria. Mansoura Univ J Agric Sci. 2001, 26: 2167-2175.
Google Scholar
Kobayashi T, Koike K, Yoshimatsu T, Higaki N, Suzumatsu A, Ozawa T, Hatada Y, Ito S: Purification and properties of a low-molecular weight, high-alkalinepectate lyase from an alkaliphilic strain of Bacillus. Biosci Biotechnol Biochem. 1999, 63: 65-72. 10.1271/bbb.63.65.
Article
CAS
Google Scholar
Narang S, Satyanarayana T: Thermostable α-amylase production by an extreme thermophilic Bacillus thermooleovorans. Lett Appl Microbiol. 2001, 32: 1-35.
Article
Google Scholar
Arunava B, Pal SC, Sen SK: Alpha amylase production in lactose medium by Bacillus circulanse. J Microbiol. 1993, 9: 142-148.
Google Scholar
Mirminachi F, Zhang A, Roehr M: Citric acid fermentation and heavy metal ions: Effect of iron, manganese and copper. Acta Biotechnol. 2000, 22: 363-373.
Article
Google Scholar