Suwannarangsee S, Arnthong J, Eurwilaichitr L, Champreda V. Production and characterization of multi-polysaccharide degrading enzymes from Aspergillus aculeatus BCC199 for saccharification of agricultural residues. J Microbiol Biotechnol. 2014;24(10):1427–37. https://doi.org/10.4014/jmb.1406.06050.
Article
CAS
PubMed
Google Scholar
Ward OP. Production of recombinant proteins by filamentous fungi. Biotechnol Adv. 2012;30(5):1119–39. https://doi.org/10.1016/j.biotechadv.2011.09.012.
Article
CAS
PubMed
Google Scholar
Nielsen JC, Grijseels S, Prigent S, Ji B, Dainat J, Nielsen KF, et al. Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species. Nat Microbiol. 2017;2:17044. https://doi.org/10.1038/nmicrobiol.2017.44.
Article
CAS
PubMed
Google Scholar
de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, et al. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol. 2017;18(1):28. https://doi.org/10.1186/s13059-017-1151-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Hu X, Sang J, Zhang Y, Zhang H, Lu F, et al. An acid-stable beta-glucosidase from Aspergillus aculeatus: gene expression, biochemical characterization and molecular dynamics simulation. Int J biol Macromol. 2018;119:462–9. https://doi.org/10.1016/j.ijbiomac.2018.07.165.
Article
CAS
PubMed
Google Scholar
Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW. The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng. 2012;109(4):1083–7. https://doi.org/10.1002/bit.24370.
Article
CAS
PubMed
Google Scholar
Sarkari P, Marx H, Blumhoff ML, Mattanovich D, Sauer M, Steiger MG. An efficient tool for metabolic pathway construction and gene integration for Aspergillus niger. Bioresour Technol. 2017;245(Pt B):1327–33. https://doi.org/10.1016/j.biortech.2017.05.004.
Article
CAS
PubMed
Google Scholar
Meyer V. Genetic engineering of filamentous fungi — Progress, obstacles and future trends. Biotechnol Advances. 2008;26(2):177–85. https://doi.org/10.1016/j.biotechadv.2007.12.001.
Article
CAS
Google Scholar
Leynaud-Kieffer LMC, Curran SC, Kim I, Magnuson JK, Gladden JM, Baker SE, et al. A new approach to Cas9-based genome editing in Aspergillus niger that is precise, efficient and selectable. PloS one. 2019;14(1):e0210243. https://doi.org/10.1371/journal.pone.0210243.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kjærbølling I, Vesth TC, Frisvad JC, Nybo JL, Theobald S, Kuo A, et al. Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species. Proc Nat Acad Sci USA. 2018;115(4):E753-EE61. doi: https://doi.org/10.1073/pnas.1715954115.
Besser J, Carleton HA, Gerner-Smidt P, Lindsey RL, Trees E. Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clin Microbiol Infect. 2018;24(4):335–41. https://doi.org/10.1016/j.cmi.2017.10.013.
Article
CAS
PubMed
Google Scholar
Shi TQ, Liu GN, Ji RY, Shi K, Song P, Ren LJ, et al. CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art. Appl Microbiol Biotechnol. 2017;101(20):7435–43. https://doi.org/10.1007/s00253-017-8497-9.
Article
CAS
PubMed
Google Scholar
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262–78. https://doi.org/10.1016/j.cell.2014.05.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23. https://doi.org/10.1126/science.1231143.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21. https://doi.org/10.1126/science.1225829.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fuller KK, Chen S, Loros JJ, Dunlap JC. Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus. Eukaryotic cell. 2015;14(11):1073–80. https://doi.org/10.1128/EC.00107-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katayama T, Tanaka Y, Okabe T, Nakamura H, Fujii W, Kitamoto K, et al. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae. Biotechnol Lett. 2016;38(4):637–42. https://doi.org/10.1007/s10529-015-2015-x.
Article
CAS
PubMed
Google Scholar
Dong H, Zheng J, Yu D, Wang B, Pan L. Efficient genome editing in Aspergillus niger with an improved recyclable CRISPR-HDR toolbox and its application in introducing multiple copies of heterologous genes. J Microbiol Methods. 2019;163:105655. https://doi.org/10.1016/j.mimet.2019.105655.
Article
CAS
PubMed
Google Scholar
Kuivanen J, Wang YMJ, Richard P. Engineering Aspergillus niger for galactaric acid production: elimination of galactaric acid catabolism by using RNA sequencing and CRISPR/Cas9. Microbial Cell Factories. 2016;15(1):210. https://doi.org/10.1186/s12934-016-0613-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song L, Ouedraogo J-P, Kolbusz M, Nguyen TTM, Tsang A. Efficient genome editing using tRNA promoter-driven CRISPR/Cas9 gRNA in Aspergillus niger. PloS one. 2018;13(8):e0202868. https://doi.org/10.1371/journal.pone.0202868.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nodvig CS, Hoof JB, Kogle ME, Jarczynska ZD, Lehmbeck J, Klitgaard DK, et al. Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli. Fungal genet biol. 2018;115:78–89. https://doi.org/10.1016/j.fgb.2018.01.004.
Article
CAS
PubMed
Google Scholar
Nodvig CS, Nielsen JB, Kogle ME, Mortensen UH. A CRISPR-Cas9 system for genetic engineering of filamentous Fungi. PLoS one. 2015;10(7):e0133085. https://doi.org/10.1371/journal.pone.0133085.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu R, Chen L, Jiang Y, Zhou Z, Zou G. Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov. 2015;1:15007. https://doi.org/10.1038/celldisc.2015.7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsu-Ura T, Baek M, Kwon J, Hong C. Efficient gene editing in Neurospora crassa with CRISPR technology. Fungal Biol Biotechnol. 2015;2:4. https://doi.org/10.1186/s40694-015-0015-1.
Article
PubMed
PubMed Central
Google Scholar
Qin H, Xiao H, Zou G, Zhou Z, Zhong J-J. CRISPR-Cas9 assisted gene disruption in the higher fungus Ganoderma species. Process Biochem. 2017;56:57–61. https://doi.org/10.1016/j.procbio.2017.02.012.
Article
CAS
Google Scholar
Liu Q, Gao R, Li J, Lin L, Zhao J, Sun W, et al. Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering. Biotechnol biofuels. 2017;10(1). https://doi.org/10.1186/s13068-016-0693-9.
Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163(3):759–71. https://doi.org/10.1016/j.cell.2015.09.038.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. 2017;37:67–78. https://doi.org/10.1016/j.mib.2017.05.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, DeGennaro EM, et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol. 2017;35(1):31–4. https://doi.org/10.1038/nbt.3737.
Article
CAS
PubMed
Google Scholar
Wang M, Mao Y, Lu Y, Tao X, Zhu JK. Multiplex gene editing in Rice using the CRISPR-Cpf1 system. Mol Plant. 2017;10(7):1011–3. https://doi.org/10.1016/j.molp.2017.03.001.
Article
CAS
PubMed
Google Scholar
Fonfara I, Richter H, Bratovic M, Le Rhun A, Charpentier E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature. 2016;532(7600):517–21. https://doi.org/10.1038/nature17945.
Article
CAS
PubMed
Google Scholar
Deng H, Gao R, Liao X, Cai Y. CRISPR system in filamentous fungi: current achievements and future directions. Gene. 2017;627:212–21. https://doi.org/10.1016/j.gene.2017.06.019.
Article
CAS
PubMed
Google Scholar
White RJ. Transcription by RNA polymerase III: more complex than we thought. Nat Rev Genet. 2011;12(7):459–63. https://doi.org/10.1038/nrg3001.
Article
CAS
PubMed
Google Scholar
Gao Y, Zhao Y. Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr plant biol. 2014;56(4):343–9. https://doi.org/10.1111/jipb.12152.
Article
CAS
PubMed
Google Scholar
Xie K, Minkenberg B, Yang Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proceedings of the National Academy of Sciences. 2015;112(11):3570–5. https://doi.org/10.1073/pnas.1420294112.
Article
CAS
Google Scholar
Vanegas KG, Jarczynska ZD, Strucko T, Mortensen UH. Cpf1 enables fast and efficient genome editing in Aspergilli. Fungal biol Biotechnol. 2019;6:6. https://doi.org/10.1186/s40694-019-0069-6.
Article
PubMed
PubMed Central
Google Scholar
Jiménez A, Hoff B, Revuelta JL. Multiplex genome editing in Ashbya gossypii using CRISPR-Cpf1. New biotechnology. 2020;57:29–33. https://doi.org/10.1016/j.nbt.2020.02.002.
Article
CAS
PubMed
Google Scholar
Liu Q, Zhang Y, Li F, Li J, Sun W, Tian C. Upgrading of efficient and scalable CRISPR-Cas-mediated technology for genetic engineering in thermophilic fungus Myceliophthora thermophila. Biotechnology for biofuels. 2019;12:293. https://doi.org/10.1186/s13068-019-1637-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li ZH, Liu M, Lyu XM, Wang FQ, Wei DZ. CRISPR/Cpf1 facilitated large fragment deletion in Saccharomyces cerevisiae. J basic Microbiol. 2018;58(12):1100–4. https://doi.org/10.1002/jobm.201800195.
Article
CAS
PubMed
Google Scholar
Swiat MA, Dashko S, den Ridder M, Wijsman M, van der Oost J, Daran JM, et al. FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae. Nucleic acids res. 2017;45(21):12585–98. https://doi.org/10.1093/nar/gkx1007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verwaal R, Buiting-Wiessenhaan N, Dalhuijsen S, Roubos JA. CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae. Yeast. 2018;35(2):201–11. https://doi.org/10.1002/yea.3278.
Article
CAS
PubMed
Google Scholar
Boeke JD, LaCroute F, Fink GR. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet. 1984;197(2):345–6. https://doi.org/10.1007/BF00330984.
Article
CAS
PubMed
Google Scholar
Ling SO, Storms R, Zheng Y, Rodzi MR, Mahadi NM, Illias RM, et al. Development of a pyrG mutant of Aspergillus oryzae strain S1 as a host for the production of heterologous proteins. Scientific World J. 2013;2013:634317. https://doi.org/10.1155/2013/634317.
Article
CAS
Google Scholar
d'Enfert C. Selection of multiple disruption events in Aspergillus fumigatus using the orotidine-5′-decarboxylase gene, pyrG, as a unique transformation marker. Curr Genet. 1996;30(1):76–82. https://doi.org/10.1007/s002940050103.
Article
CAS
PubMed
Google Scholar
Weidner G, d'Enfert C, Koch A, Mol PC, Brakhage AA. Development of a homologous transformation system for the human pathogenic fungus Aspergillus fumigatus based on the pyrG gene encoding orotidine 5′-monophosphate decarboxylase. Curr Genet. 1998;33(5):378–85. https://doi.org/10.1007/s002940050350.
Article
CAS
PubMed
Google Scholar
Kim H, Kim ST, Ryu J, Kang BC, Kim JS, Kim SG. CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun. 2017;8:14406. https://doi.org/10.1038/ncomms14406.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swarts DC, Jinek M. Cas9 versus Cas12a/Cpf1: structure-function comparisons and implications for genome editing. Wiley Interdiscip rev RNA. 2018:e1481. https://doi.org/10.1002/wrna.1481.
Jöchl C, Rederstorff M, Hertel J, Stadler PF, Hofacker IL, Schrettl M, et al. Small ncRNA transcriptome analysis from Aspergillus fumigatus suggests a novel mechanism for regulation of protein synthesis. Nucleic Acids Res. 2008;36(8):2677–89. https://doi.org/10.1093/nar/gkn123.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swarts DC, van der Oost J, Jinek M. Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol Cell. 2017;66(2):221–33.e4. https://doi.org/10.1016/j.molcel.2017.03.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang Y, Qian F, Yang J, Liu Y, Dong F, Xu C, et al. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun. 2017;8:15179. https://doi.org/10.1038/ncomms15179.
Article
PubMed
PubMed Central
Google Scholar
Ding D, Chen K, Chen Y, Li H, Xie K. Engineering introns to express RNA guides for Cas9- and Cpf1-mediated multiplex genome editing. Mol Plant. 2018;11(4):542–52. https://doi.org/10.1016/j.molp.2018.02.005.
Article
CAS
PubMed
Google Scholar
Arentshorst M, Ram AFJ, Meyer V. Using non-homologous end-joining-deficient strains for functional gene analyses in filamentous Fungi. In: Bolton MD, Thomma BPHJ, editors. Plant fungal pathogens: methods and protocols. Totowa, NJ: Humana Press; 2012. p. 133–50.
Chapter
Google Scholar
Vieira J, Messing J. New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene. 100:1991, 189–4. https://doi.org/10.1016/0378-1119(91)90365-I.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat methods. 2009;6(5):343–5. https://doi.org/10.1038/nmeth.1318.
Article
CAS
PubMed
Google Scholar
Johnstone IL, Hughes SG, Clutterbuck AJ. Cloning an Aspergillus nidulans developmental gene by transformation. EMBO J. 1985;4(5):1307–11. https://doi.org/10.1002/j.1460-2075.1985.tb03777.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Penttilä M, Nevalainen H, Rättö M, Salminen E, Knowles J. A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene. 1987;61(2):155–64. https://doi.org/10.1016/0378-1119(87)90110-7.
Article
PubMed
Google Scholar
Berger H, Pachlinger R, Morozov I, Goller S, Narendja F, Caddick M, et al. The GATA factor AreA regulates localization and in vivo binding site occupancy of the nitrate activator NirA. Mol Microbiol. 2006;59(2):433–46. https://doi.org/10.1111/j.1365-2958.2005.04957.x.
Article
CAS
PubMed
Google Scholar
Vaknin Y, Hillmann F, Iannitti R, Ben Baruch N, Sandovsky-Losica H, Shadkchan Y, et al. Identification and characterization of a novel Aspergillus fumigatus rhomboid family putative protease, RbdA, involved in hypoxia sensing and virulence. Infect Immun. 2016;84(6):1866–78. https://doi.org/10.1128/IAI.00011-16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang C, Meng X, Wei X, Lu L. Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus. Fungal Genet Biol. 2016;86:47–57. https://doi.org/10.1016/j.fgb.2015.12.007.
Article
CAS
PubMed
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochem. 1976;72(1):248–54. https://doi.org/10.1016/0003-2697(76)90527-3.
Article
CAS
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–9. https://doi.org/10.1093/bioinformatics/bts199.
Article
PubMed
PubMed Central
Google Scholar