Dimov IK, Lu R, Lee EP, Seita J, Sahoo D, Park SM, Weissman IL, Lee LP. Discriminating cellular heterogeneity using microwell-based RNA cytometry. Nat Commun. 2014;5. doi:10.1038/ncomms4451.
Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, et al. Highly parallel genome-wide expression profiling of individual cells using Nanoliter droplets. Cell. 2015;161(5):1202–14.
Article
CAS
Google Scholar
Streets AM, Zhang XN, Cao C, Pang YH, XL W, Xiong L, Yang L, YS F, Zhao L, Tang FC, et al. Microfluidic single-cell whole-transcriptome sequencing. Proc Natl Acad Sci U S A. 2014;111(19):7048–53.
Article
CAS
Google Scholar
White AK, Heyries KA, Doolin C, VanInsberghe M, Hansen CL. High-throughput microfluidic single-cell digital polymerase chain reaction. Anal Chem. 2013;85(15):7182–90.
Article
CAS
Google Scholar
Guillotin B, Guillemot F. Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol. 2011;29(4):183–90.
Article
CAS
Google Scholar
Hribar KC, Meggs K, Liu J, Zhu W, Qu X, Chen SC. Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser. Sci Rep. 2015;5
Jaganathan H, Gage J, Leonard F, Srinivasan S, Souza GR, Dave B, Godin B. Three-dimensional in vitro co-culture model of breast tumor using magnetic levitation. Sci Rep. 2014;4. doi:10.1038/srep06468.
Kellogg RA, Gomez-Sjoberg R, Leyrat AA, Tay S. High-throughput microfluidic single-cell analysis pipeline for studies of signaling dynamics. Nat Protoc. 2014;9(7):1713–26.
Article
CAS
Google Scholar
Xu F, Celli J, Rizvi I, Moon S, Hasan T, Demirci U. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol J. 2011;6(2):204–12.
Article
CAS
Google Scholar
Heath JR, Ribas A, Mischel PS. Single-cell analysis tools for drug discovery and development. Nat Rev Drug Discov. 2016;15(3):204–16.
Article
CAS
Google Scholar
Kang DK, Gong XQ, Cho S, Kim JY, Edel JB, Chang SI, Choo J, Demello AJ. 3D droplet microfluidic Systems for High-Throughput Biological Experimentation. Anall Chem. 2015;87(21):10770–8.
Article
CAS
Google Scholar
Neuzil P, Giselbrecht S, Lange K, Huang TJ, Manz A. Revisiting lab-on-a-chip technology for drug discovery. Nat Rev Drug Discov. 2012;11(8):620–32.
Article
Google Scholar
Chen YC, Allen SG, Ingram PN, Buckanovich R, Merajver SD, Yoon E. Single-cell migration Chip for Chemotaxis-based microfluidic selection of heterogeneous cell populations. Sci Rep. 2015;5:9980.
Article
CAS
Google Scholar
Hulkower KI, Perr M. Quantifying cell migration and invasion. Genet Eng Biotechn N. 2008;28(17):32.
Google Scholar
Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481(7381):306–13.
Article
CAS
Google Scholar
Lidstrom ME, Meldrum DR. Life-on-a-chip. Nat Rev Microbiol. 2003;1(2):158–64.
Article
CAS
Google Scholar
Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer. 2012;12(5):323–34.
Article
CAS
Google Scholar
Pietras K, Ostman A. Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res. 2010;316(8):1324–31.
Article
CAS
Google Scholar
Gross A, Schondube J, Niekrawitz S, Streule W, Riegger L, Zengerle R, Koltay P. Single-cell printer: automated, on demand, and label free. Jala- J Lab Autom. 2013;18(6):504–18.
Article
CAS
Google Scholar
Stumpf F, Schoendube J, Gross A, Rath C, Niekrawietz S, Koltay R, Roth G, Single-cell PCR. Of genomic DNA enabled by automated single-cell printing for cell isolation. Biosens Bioelectron. 2015;69:301–6.
Article
CAS
Google Scholar
Liberski AR, Delaney JT, Schubert US. “eOne cell-one well”: a new approach to inkjet printing single cell microarrays. ACS Comb Sci. 2011;13(2):190–5.
Article
CAS
Google Scholar
Martinez V, Forro C, Weydert S, Aebersold MJ, Dermutz H, Guillaume-Gentil O, Zambelli T, Voros J, Demko L. Controlled single-cell deposition and patterning by highly flexible hollow cantilevers. Lab Chip. 2016;16(9):1663–74.
Article
CAS
Google Scholar
Zhang K, Chou CK, Xia XF, Hung MC, Qin LD. Block-cell-printing for live single-cell printing. Proc Natl Acad Sci U S A. 2014;111(8):2948–53.
Article
CAS
Google Scholar
Wlodkowic D, Faley S, Zagnoni M, Wikswo JP, Cooper JM. Microfluidic single-cell Array Cytometry for the analysis of tumor apoptosis. Anal Chem. 2009;81(13):5517–23.
Article
CAS
Google Scholar
Chung KH, Rivet CA, Kemp ML, Lu H. Imaging single-cell signaling dynamics with a deterministic high-density single-cell trap Array. Anal Chem. 2011;83(18):7044–52.
Article
CAS
Google Scholar
Jin D, Deng B, Li JX, Cai W, Tu L, Chen J, Wu Q, Wang WH. A microfluidic device enabling high-efficiency single cell trapping. Biomicrofluidics. 2015;9(1)
Barty A, Caleman C, Aquila A, Timneanu N, Lomb L, White TA, Andreasson J, Arnlund D, Bajt S, Barends TRM, et al. Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nat Photonics. 2012;6(1):35–40.
Article
CAS
Google Scholar
Kimmerling RJ, Szeto GL, Li JW, Genshaft AS, Kazer SW, Payer KR, Borrajo JD, Blainey PC, Irvine DJ, Shalek AK, et al. A microfluidic platform enabling single-cell RNA-seq of multigenerational lineages. Nat Commun. 2016;7
Ryley J, Pereira-Smith OM. Microfluidics device for single cell gene expression analysis in Saccharomyces Cerevisiae. Yeast. 2006;23(14–15):1065–73.
Article
CAS
Google Scholar
PH W, Phillip JM, Khatau SB, Chen WC, Stirman J, Rosseel S, Tschudi K, Van Patten J, Wong M, Gupta S, et al. Evolution of cellular morpho-phenotypes in cancer metastasis. Sci Rep. 2015;5
Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML. Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci U S A. 2009;106(34):14195–200.
Article
CAS
Google Scholar
Guo MT, Rotem A, Heyman JA, Weitz DA. Droplet microfluidics for high-throughput biological assays. Lab Chip. 2012;12(12):2146–55.
Article
CAS
Google Scholar
Mazutis L, Gilbert J, Ung WL, Weitz DA, Griffiths AD, Heyman JA. Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc. 2013;8(5):870–91.
Article
CAS
Google Scholar
Wen N, Zhao Z, Fan BY, Chen DY, Men D, Wang JB, Chen J. Development of droplet microfluidics enabling high-throughput single-cell analysis. Molecules. 2016;21(7)
Varma S, Voldman J. A cell-based sensor of fluid shear stress for microfluidics. Lab Chip. 2015;15(6):1563–73.
Article
CAS
Google Scholar
Ino K, Okochi M, Konishi N, Nakatochi M, Imai R, Shikida M, Ito A, Honda H. Cell culture arrays using magnetic force-based cell patterning for dynamic single cell analysis. Lab Chip. 2008;8(1):134–42.
Article
CAS
Google Scholar
Okochi M, Matsumura T, Honda H. Magnetic force-based cell patterning for evaluation of the effect of stromal fibroblasts on invasive capacity in 3D cultures. Biosens Bioelectron. 2013;42:300–7.
Article
CAS
Google Scholar
Sen M, Ino K, Ramon-Azcon J, Shiku H, Matsue T. Cell pairing using a dielectrophoresis-based device with interdigitated array electrodes. Lab Chip. 2013;13(18):3650–2.
Article
CAS
Google Scholar
Valero A, Braschler T, Demierre N, Renaud P. A miniaturized continuous dielectrophoretic cell sorter and its applications. Biomicrofluidics. 2010;4(2)
Wang HSM, Elango IS, Shetty RM, Teller W, Shabilla A, et al. Rotation of cells and cell clusters in culture Media for Optical Computed Tomography. 17th Int Conf Miniaturized. Syst Chem Life Sci. 2013;2:1090–2.
Google Scholar
Kirkham GR, Britchford E, Upton T, Ware J, Gibson GM, Devaud Y, Ehrbar M, Padgett M, Allen S, Buttery LD, et al. Precision assembly of complex cellular microenvironments using holographic optical tweezers. Sci Rep. 2015;5. doi:10.1038/srep08577.
Kolb T, Albert S, Haug M, Whyte G. Dynamically reconfigurable fibre optical spanner. Lab Chip. 2014;14(6):1186–90.
Article
CAS
Google Scholar
Mirsaidov U, Scrimgeour J, Timp W, Beck K, Mir M, Matsudaira P, Timp G. Live cell lithography: using optical tweezers to create synthetic tissue. Lab Chip. 2008;8(12):2174–81.
Article
CAS
Google Scholar
Rasmussen MB, Oddershede LB, Siegumfeldt H. Optical tweezers cause physiological damage to Escherichia Coli and Listeria bacteria. Appl Environ Microb. 2008;74(8):2441–6.
Article
CAS
Google Scholar
Collins DJ, Morahan B, Garcia-Bustos J, Doerig C, Plebanski M, Neild A. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat Commun. 2015;6:8686. doi:10.1038/ncomms9686.
Gesellchen F, Bernassau AL, Dejardin T, Cumming DRS, Riehle MO. Cell patterning with a heptagon acoustic tweezer - application in neurite guidance. Lab Chip. 2014;14(13):2266–75.
Article
CAS
Google Scholar
Ahmed D, Ozcelik A, Bojanala N, Nama N, Upadhyay A, Chen YC, Hanna-Rose W, Huang TJ. Rotational manipulation of single cells and organisms using acoustic waves. Nat Commun. 2016;7. doi:10.1038/ncomms11085.
Shi JJ, Ahmed D, Mao X, Lin SCS, Lawit A, Huang TJ. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip. 2009;9(20):2890–5.
Article
CAS
Google Scholar
Azioune A, Storch M, Bornens M, Thery M, Piel M. Simple and rapid process for single cell micro-patterning. Lab Chip. 2009;9(11):1640–2.
Article
CAS
Google Scholar
Flaim CJ, Chien S, Bhatia SN. An extracellular matrix microarray for probing cellular differentiation. Nat Methods. 2005;2(2):119–25.
Article
CAS
Google Scholar
Lan S, Veiseh M, Zhang MQ. Surface modification of silicon and gold-patterned silicon surfaces for improved biocompatibility and cell patterning selectivity. Biosens Bioelectron. 2005;20(9):1697–708.
Article
CAS
Google Scholar
Ren D, Xia YQ, Wang J, You Z. Micropatterning of single cell arrays using the PEG-Silane and Biotin-(Strept) Avidin system with photolithography and chemical vapor deposition. Sensor Actuat B-Chem. 2013;188:340–6.
Article
CAS
Google Scholar
Li GN, Yang G, Zhang PC, Li YY, Meng JX, Liu HL, Wang ST. Rapid cell patterning induced by differential topography on silica Nanofractal substrates. Small. 2015;11(42):5642–6.
Article
CAS
Google Scholar
Li W, Tang QY, Jadhav AD, Narang A, Qian WX, Shi P, Pang SW. Large-scale topographical screen for investigation of physical neural-guidance cues. Sci Rep. 2015;5:8644. doi:10.1038/srep08644.
Kaji H, Camci-Unal G, Langer R, Khademhosseini A. Engineering systems for the generation of patterned co-cultures for controlling cell-cell interactions. Bba-Gen Subjects. 2011;1810(3):239–50.
Article
CAS
Google Scholar
Mooney R, Haeger S, Lawal R, Mason M, Shrestha N, Laperle A, Bjugstad K, Mahoney M. Control of neural cell composition in poly(ethylene glycol) Hydrogel culture with soluble factors. Tissue Eng Pt A. 2011;17(21–22):2805–15.
Article
CAS
Google Scholar
Jeanes A, Gottardi CJ, Yap AS. Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene. 2008;27(55):6920–9.
Article
CAS
Google Scholar
Steinberg MS. Differential adhesion in morphogenesis: a modern view. Curr Opin Genet Dev. 2007;17(4):281–6.
Article
CAS
Google Scholar
Berrier AL, Yamada KM. Cell-matrix adhesion. J Cell Physiol. 2007;213(3):565–73.
Article
CAS
Google Scholar
Glenn HL, Wang ZH, Schwartz LM. Acheron, a lupus antigen family member, regulates integrin expression, adhesion, and motility in differentiating myoblasts. Am J Physiol-Cell Physiol. 2010;298(1):C46–55.
Article
CAS
Google Scholar
Dai W, Li WB, Ren KN, Wu HK. Convenient, reliable, bias-free dynamic patterning of multiple types of cells into precisely defined micropatterns for co-culture study. Chem Aust. 2016;2(5):447–53.
CAS
Google Scholar
Etzkorn JR, WC W, Tian ZY, Kim P, Jang SH, Meldrum DR, Jen AKY, Parviz BA. Using micro-patterned sensors and cell self-assembly for measuring the oxygen consumption rate of single cells. J Micromech Microeng. 2010;20(9)
Javaherian S, O'Donnell KA, McGuigan AP, Fast A. Accessible methodology for micro-patterning cells on standard culture substrates using Parafilm (TM) inserts. PLoS One. 2011;6(6)
Li W, Xu Z, Huang JZ, Lin XD, Luo RC, Chen CH, Shi P. NeuroArray: a universal Interface for patterning and interrogating neural circuitry with single cell resolution. Sci Rep. 2014;4
JB W, Zhang MY, Chen LQ, Yu V, Wong JTY, Zhang XX, Qin JH, Wen WJ. Patterning cell using Si-stencil for high-throughput assay. RSC Adv. 2011;1(5):746–50.
Article
Google Scholar
Lew V, Nguyen D, Khine M. Shrink-induced single-cell plastic microwell Array. Jala-J Lab Autom. 2011;16(6):450–6.
Article
Google Scholar
Kelbauskas L, Glenn H, Anderson C, Messner J, Lee KB, Song GQ, Houkal J, FY S, Zhang LQ, Tian YQ, et al. A platform for high-throughput bioenergy production phenotype characterization in single cells. Sci Rep. 2017;7. doi:10.1038/srep45399.
HG L, Jin YG, Tian YQ, Zhang WW, Holl MR, Meldrum DR. New ratiometric optical oxygen and pH dual sensors with three emission colors for measuring photosynthetic activity in cyanobacteria. J Mater Chem. 2011;21(48):19293–301.
Article
Google Scholar
Tian YQ, Shumway BR, Gao WM, Youngbull C, Holl MR, Johnson RH, Meldrum DR. Influence of matrices on oxygen sensing of three sensing films with chemically conjugated platinum porphyrin probes and preliminary application for monitoring of oxygen consumption of Escherichia Coli (E coli). Sensor Actuat B-Chem. 2010;150(2):579–87.
Article
CAS
Google Scholar
Tian YQ, Shumway BR, Youngbull AC, Li YZ, Jen AKY, Johnson RH, Meldrum DR. Dually fluorescent sensing of pH and dissolved oxygen using a membrane made from polymerizable sensing monomers. Sensor Actuat B-Chem. 2010;147(2):714–22.
Article
CAS
Google Scholar
Tian YQ, FY S, Weber W, Nandakumar V, Shumway BR, Jin YG, Zhou XF, Holl MR, Johnson RH, Meldrum DR. A series of naphthalimide derivatives as intra and extracellular pH sensors. Biomaterials. 2010;31(29):7411–22.
Article
CAS
Google Scholar
Frimat JP, Becker M, Chiang YY, Marggraf U, Janasek D, Hengstler JG, Franzke J, West J. A microfluidic array with cellular valving for single cell co-culture. Lab Chip. 2011;11(2):231–7.
Article
CAS
Google Scholar
Conde JP, Madaboosi N, Soares RRG, Fernandes JTS, Novo P, Moulas G, Chu V. Lab-on-chip systems for integrated bioanalyses. In: Biosensor Technologies for Detection of biomolecules. Edited by Estrela P, vol. 60; 2016. p. 121–31.
Google Scholar
Nan L, Jiang ZD, Wei XY. Emerging microfluidic devices for cell lysis: a review. Lab Chip. 2014;14(6):1060–73.
Article
CAS
Google Scholar
Dong H, Sun H, Zheng JP. A microchip for integrated single-cell genotoxicity assay. Talanta. 2016;161:804–11.
Article
CAS
Google Scholar
Zhang R, Gong HQ, Zeng XD, Lou CP, Sze C, Microfluidic Liquid A. Phase nucleic acid purification Chip to selectively isolate DNA or RNA from low copy/single bacterial cells in minute sample volume followed by direct on-Chip quantitative PCR assay. Anal Chem. 2013;85(3):1484–91.
Article
CAS
Google Scholar
Lee WC, Rigante S, Pisano AP, Kuypers FA. Large-scale arrays of picolitre chambers for single-cell analysis of large cell populations. Lab Chip. 2010;10(21):2952–8.
Article
CAS
Google Scholar
Gole J, Gore A, Richards A, Chiu YJ, Fung HL, Bushman D, Chiang HI, Chun J, Lo YH, Zhang K. Massively parallel polymerase cloning and genome sequencing of single cells using nanoliter microwells. Nat Biotechnol. 2013;31(12):1126.
Article
CAS
Google Scholar
McWhorter FY, Smith TD, Luu TU, Rahim MK, Haun JB, Liu WF. Macrophage secretion heterogeneity in engineered microenvironments revealed using a microwell platform. Integr Biol. 2016;8(7):751–60.
Article
CAS
Google Scholar