Bajaj A, Lohan P, Jha PN, Mehrotra R. Biodiesel production through lipase catalyzed transesterification: an overview. J Mol Catal B Enzym. 2010;62:9–14.
Article
CAS
Google Scholar
Moreno-Perez S, Luna P, Señorans FJ, Guisan JM, Fernandez-Lorente G. Enzymatic synthesis of triacylglycerols of docosahexaenoic acid: Transesterification of its ethyl esters with glycerol. Food Chem. 2015;187:225–9.
Article
CAS
Google Scholar
Hasan F, Shah AA, Hameed A. Industrial applications of microbial lipases. Enzym Microb Technol. 2006;39:235–51.
Article
CAS
Google Scholar
Fukuda H, Kondo A, Noda H. Biodiesel fuel production by transesterification of oils. J Biosci Bioeng. 2001;92:405–16.
Article
CAS
Google Scholar
Houde A, Kademi A, Leblanc D. Lipases and their industrial applications. Appl Biochem Biotechnol. 2004;118:155–70.
Article
CAS
Google Scholar
Zhao X, Qi F, Yuan C, Du W, Liu D. Lipase-catalyzed process for biodiesel production: enzyme immobilization, process simulation and optimization. Renew Sustainable Energy Rev. 2015;44:182–97.
Article
CAS
Google Scholar
DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G. Industrial use of immobilized enzymes. Chem Soc Rev. 2013;42:6437–74.
Article
CAS
Google Scholar
Sheldon RA, van Pelt S. Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev. 2013;42:6223–35.
Article
CAS
Google Scholar
Guldhe A, Singh B, Mutanda T, Permaul K, Bux F. Advances in synthesis of biodiesel via enzyme catalysis: novel and sustainable approaches. Renew Sustainable Energy Rev. 2015;41:1447–64.
Article
CAS
Google Scholar
Cao X, Mangas-Sánchez J, Feng F, Adlercreutz P. Acyl migration in enzymatic interesterification of triacylglycerols: effects of lipases from Thermomyces lanuginosus and Rhizopus oryzae, support material, and water activity. Eur J Lipid Sci Technol. 2016;118:1579–87.
Article
CAS
Google Scholar
Du W, Y-Y X, Liu D-H, Li Z-B. Study on acyl migration in immobilized lipozyme TL-catalyzed transesterification of soybean oil for biodiesel production. J Mol Catal B Enzym. 2005;37:68–71.
Article
CAS
Google Scholar
Zhang H, Xu X, Mu H, Nilsson J, Adler-Nissen J, Høy C-E. Lipozyme IM-catalyzed interesterification for the production of margarine fats in a 1 kg scale stirred tank reactor. Eur J Lipid Sci Technol. 2000;102:411–8.
Article
CAS
Google Scholar
Shu Z-Y, Yan Y-J, Yang J-K, Xu L. Aspergillus niger lipase: gene cloning, over-expression in Escherichia coli and in vitro refolding. Biotechnol Lett. 2007;29:1875–9.
Article
CAS
Google Scholar
Fernandez-Lafuente R. Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. J Mol Catal B Enzym. 2010;62:197–212.
Article
CAS
Google Scholar
Berger M, Laumen K, Schneider MP. Enzymatic esterification of glycerol I. Lipase-catalyzed synthesis of regioisomerically pure 1,3-sn-diacylglycerols. J Am Oil Chem Soc. 1992;69:955–60.
Article
CAS
Google Scholar
Domínguez de María P, Carboni-Oerlemans C, Tuin B, Bargeman G, van der Meer A, van Gemert R. Biotechnological applications of Candida antarctica lipase a: state-of-the-art. J Mol Catal B Enzym. 2005;37:36–46.
Article
Google Scholar
Stöcklein W, Sztajer H, Menge U, Schmid RD. Purification and properties of a lipase from Penicillium expansum. Biochim Biophys Acta. 1993;1168:181–9.
Article
Google Scholar
Pan S, Liu X, Xie Y, Yi Y, Li C, Yan Y, Liu Y. Esterification activity and conformation studies of Burkholderia cepacia lipase in conventional organic solvents, ionic liquids and their co-solvent mixture media. Bioresour Technol. 2010;101:9822–4.
Article
CAS
Google Scholar
Foresti ML, Ferreira ML. Solvent-free ethyl oleate synthesis mediated by lipase from Candida antarctica B adsorbed on polypropylene powder. Catal Today. 2005;107–108:23–30.
Article
Google Scholar
Hazarika S, Goswami P, Dutta NN, Hazarika AK. Ethyl oleate synthesis by porcine pancreatic lipase in organic solvents. Chem Eng J. 2002;85:61–8.
Article
CAS
Google Scholar
Martínez-Ruiz A, García HS, Saucedo-Castañeda G, Favela-Torres E. Organic phase synthesis of ethyl oleate using lipases produced by solid-state fermentation. Appl Biochem Biotechnol. 2008;151:393–401.
Article
Google Scholar
Jackson MA, King JW. Lipase-catalyzed glycerolysis of soybean oil in supercritical carbon dioxide. J Am Oil Chem Soc. 1997;74:103–6.
Article
CAS
Google Scholar
Wang X, Liang L, Yu Z, Rui L, Jin Q, Wang X. Scalable synthesis of highly pure 2-monoolein by enzymatic ethanolysis. Eur J Lipid Sci Technol. 2014;116:627–34.
Article
CAS
Google Scholar
Stamenković OS, Veličković AV, Veljković VB. The production of biodiesel from vegetable oils by ethanolysis: current state and perspectives. Fuel. 2011;90:3141–55.
Article
Google Scholar
Dizge N, Keskinler B, Tanriseven A. Biodiesel production from canola oil by using lipase immobilized onto hydrophobic microporous styrene–divinylbenzene copolymer. Biochem Eng J. 2009;44:220–5.
Article
CAS
Google Scholar
Moreno-Pérez S, Guisan JM, Fernandez-Lorente G. Selective ethanolysis of fish oil catalyzed by immobilized lipases. J Am Oil Chem Soc. 2014;91:63–9.
Article
Google Scholar
Moreno-Perez S, Turati DFM, Borges JP, Luna P, Señorans FJ, Guisan JM, Fernandez-Lorente G. Critical role of different immobilized biocatalysts of a given lipase in the selective ethanolysis of sardine oil. J Agric Food Chem. 2017;65:117–22.
Article
CAS
Google Scholar
Manoel EA, JCS d S, DMG F, Rueda N, Fernandez-Lafuente R. Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzym Microb Technol. 2015;71:53–7.
Article
CAS
Google Scholar
Palomo JM, Muñoz G, Fernández-Lorente G, Mateo C, Fernández-Lafuente R, Guisán JM. Interfacial adsorption of lipases on very hydrophobic support (octadecyl–Sepabeads): immobilization, hyperactivation and stabilization of the open form of lipases. J Mol Catal B Enzym. 2002;19:279–86.
Article
Google Scholar
Jaeger K-E, Ransac S, Dijkstra BW, Colson C, van Heuvel M, Misset O. Bacterial lipases. FEMS Microbiol Rev. 1994;15:29–63.
Article
CAS
Google Scholar
Bastida A, Sabuquillo P, Armisen P, Fernández-Lafuente R, Huguet J, Guisán JMA. Single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnol Bioeng. 1998;58:486–93.
Article
CAS
Google Scholar
Aybastıer Ö, Demir C. Optimization of immobilization conditions of Thermomyces lanuginosus lipase on styrene–divinylbenzene copolymer using response surface methodology. J Mol Catal B Enzym. 2010;63:170–8.
Article
Google Scholar
Cabrera Z, Fernandez-Lorente G, Fernandez-Lafuente R, Palomo JM, Guisan JM. Novozym 435 displays very different selectivity compared to lipase from Candida antarctica B adsorbed on other hydrophobic supports. J Mol Catal B Enzym. 2009;57:171–6.
Article
CAS
Google Scholar
Fernandez-Lafuente R, Armisén P, Sabuquillo P, Fernández-Lorente G, Guisán M, Immobilization J. Of lipases by selective adsorption on hydrophobic supports. Chem Phys Lipids. 1998;93:185–97.
Article
CAS
Google Scholar
Valivety RH, Halling PJ, Peilow AD, Macrae AR. Relationship between water activity and catalytic activity of lipases in organic media. Eur J Biochem. 1994;222:461–6.
Article
CAS
Google Scholar
Fernandez-Lorente G, Cabrera Z, Godoy C, Fernandez-Lafuente R, Palomo JM, Guisan JM. Interfacially activated lipases against hydrophobic supports: effect of the support nature on the biocatalytic properties. Process Biochem. 2008;43:1061–7.
Article
CAS
Google Scholar
Chaubey A, Parshad R, Koul S, Taneja SC, Qazi GN. Enantioselectivity modulation through immobilization of Arthrobacter sp. lipase: kinetic resolution of fluoxetine intermediate. J Mol Catal B Enzym. 2006;42:39–44.
Article
CAS
Google Scholar
Moreno-Perez S, Ghattas N, Filice M, Guisan JM, Fernandez-Lorente G. Dramatic hyperactivation of lipase of Thermomyces lanuginosa by a cationic surfactant: fixation of the hyperactivated form by adsorption on sulfopropyl-sepharose. J Mol Catal B Enzym. 2015;122:199–203.
Article
CAS
Google Scholar
Fernandez-Lorente G, Palomo JM, Cabrera Z, Fernandez-Lafuente R, Guisán JM. Improved catalytic properties of immobilized lipases by the presence of very low concentrations of detergents in the reaction medium. Biotechnol Bioeng. 2007;97:242–50.
Article
CAS
Google Scholar
Palomo JM, Fernández-Lorente G, Mateo C, Fuentes M, Fernández-Lafuente R, Guisan JM. Modulation of the enantioselectivity of Candida antarctica B lipase via conformational engineering. Kinetic resolution of (±)-α-hydroxy-phenylacetic acid derivatives. Tetrahedron Asymmetry. 2002;13:1337–45.
Article
CAS
Google Scholar
Godoy CA, Fernández-Lorente G, de las Rivas B, Filice M, Guisan JM, Palomo JM. Medium engineering on modified Geobacillus thermocatenulatus lipase to prepare highly active catalysts. J Mol Catal B Enzym. 2011;70:144–8.
Article
CAS
Google Scholar
Hermoso J, Pignol D, Kerfelec B, Crenon I, Chapus C, Fontecilla-Camps JC. Lipase activation by nonionic detergents: the crystal structure of the porcine lipase-colipase-tetraethylene glycol monooctyl ether complex. J Biol Chem. 1996;271:18007–16.
Article
CAS
Google Scholar
Bañó MC, González-Navarro H, Abad C. Long-chain fatty acyl-CoA esters induce lipase activation in the absence of a water–lipid interface. Biochim Biophys Acta. 2003;1632:55–61.
Article
Google Scholar
Jutila A, Zhu K, Patkar SA, Vind J, Svendsen A, Kinnunen PKJ. Detergent-induced conformational changes of humicola lanuginosa lipase studied by fluorescence spectroscopy. Biophys J. 2000;78:1634–42.
Article
CAS
Google Scholar
Mogensen JE, Sehgal P, Otzen DE. Activation, inhibition, and destabilization of Thermomyces lanuginosus lipase by detergents. Biochemistry. 2005;44:1719–30.
Article
CAS
Google Scholar
Tacias-Pascacio VG, Peirce S, Torrestiana-Sanchez B, Yates M, Rosales-Quintero A, Virgen-Ortiz JJ, Fernandez-Lafuente R. Evaluation of different commercial hydrophobic supports for the immobilization of lipases: tuning their stability, activity and specificity. RSC Adv. 2016;6:100281–94.
Article
CAS
Google Scholar
Basso A, Froment L, Hesseler M, Serban S. New highly robust divinyl benzene/acrylate polymer for immobilization of lipase CALB. Eur J Lipid Sci Technol. 2013;115:468–72.
Article
CAS
Google Scholar
Basso A, Hesseler M, Serban S. Hydrophobic microenvironment optimization for efficient immobilization of lipases on octadecyl functionalised resins. Tetrahedron. 2016;72:7323–8.
Article
CAS
Google Scholar
Petkar M, Lali A, Caimi P, Daminati M. Immobilization of lipases for non-aqueous synthesis. J Mol Catal B Enzym. 2006;39:83–90.
Article
CAS
Google Scholar
Guillén M, Benaiges MD, Valero F. Biosynthesis of ethyl butyrate by immobilized recombinant Rhizopus oryzae lipase expressed in Pichia pastoris. Biochem Eng J. 2012;65:1–9.
Article
Google Scholar
Macario A, Giordano G, Setti L, Parise A, Campelo JM, Marinas JM, Luna D. Study of lipase immobilization on zeolitic support and transesterification reaction in a solvent free-system. Biocatal Biotransform. 2007;25:328–35.
Article
CAS
Google Scholar
Quintana PG, Canet A, Marciello M, Valero F, Palomo JM, Baldessari A. Enzyme-catalyzed preparation of chenodeoxycholic esters by an immobilized heterologous Rhizopus oryzae lipase. J Mol Catal B Enzym. 2015;118:36–42.
Article
CAS
Google Scholar
Rodrigues J, Canet A, Rivera I, Osório NM, Sandoval G, Valero F, Ferreira-Dias S. Biodiesel production from crude Jatropha oil catalyzed by non-commercial immobilized heterologous Rhizopus oryzae and Carica papaya lipases. Bioresour Technol. 2016;213:88–95.
Article
CAS
Google Scholar
Santibáñez L, Wilson L, Illanes A. Synthesis of ascorbyl palmitate with immobilized lipase from Pseudomonas stutzeri. J Am Oil Chem Soc. 2014;91:405–10.
Article
Google Scholar
Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76–85.
Article
CAS
Google Scholar
Holčapek M, Jandera P, Fischer J, Prokeš B. Analytical monitoring of the production of biodiesel by high-performance liquid chromatography with various detection methods. J Chromatogr. 1999;858:13–31.
Article
Google Scholar
Compton DL, Laszlo JA, Evans KO. Influence of solid supports on acyl migration in 2-monoacylglycerols: purification of 2-MAG via flash chromatography. J Am Oil Chem Soc. 2013;90:1397–403.
Article
CAS
Google Scholar
Mukherjee J, Gupta MN. Dual bioimprinting of Thermomyces lanuginosus lipase for synthesis of biodiesel. Biotechnology Reports. 2016;10:38–43.
Article
Google Scholar
Mukherjee J, Gupta MN. Molecular bioimprinting of lipases with surfactants and its functional consequences in low water media. Int J Biol Macromol. 2015;81:544–51.
Article
CAS
Google Scholar
Calero J, Luna D, Sancho ED, Luna C, Bautista FM, Romero AA, Posadillo A, Berbel J, Verdugo-Escamilla C. An overview on glycerol-free processes for the production of renewable liquid biofuels, applicable in diesel engines. Renew Sustainable Energy Rev. 2015;42:1437–52.
Article
CAS
Google Scholar
Guisán JM, Melo FV, Ballesteros A. Determination of intrinsic properties of immobilized enzymes. Appl Biochem Biotechnol. 1981;6:25–36.
Article
Google Scholar
Hu B, Pan J, H-L Y, Liu J-W, Immobilization XJ-H. Of Serratia marcescens lipase onto amino-functionalized magnetic nanoparticles for repeated use in enzymatic synthesis of Diltiazem intermediate. Process Biochem. 2009;44:1019–24.
Article
CAS
Google Scholar
Zhang D-H, Yuwen L-X, Li C, Li Y-Q. Effect of poly(vinyl acetate–acrylamide) microspheres properties and steric hindrance on the immobilization of Candida rugosa lipase. Bioresour Technol. 2012;124:233–6.
Article
CAS
Google Scholar
Lei Z, Jiang Q. Synthesis and properties of immobilized pectinase onto the macroporous polyacrylamide microspheres. J Agric Food Chem. 2011;59:2592–9.
Article
CAS
Google Scholar
Zaak H, Siar E-H, Kornecki JF, Fernandez-Lopez L, Pedrero SG, Virgen-Ortíz JJ, Fernandez-Lafuente R. Effect of immobilization rate and enzyme crowding on enzyme stability under different conditions. The case of lipase from Thermomyces lanuginosus immobilized on octyl agarose beads. Process Biochem. 2017;56:117–23.
Article
CAS
Google Scholar
Fureby AM, Virto C, Adlercreutz P, Mattiasson B. Acyl group migrations in 2-monoolein. Biocatal Biotransform. 1996;14:89–111.
Article
CAS
Google Scholar
Filice M, Marciello M, Betancor L, Carrascosa AV, Guisan JM, Fernandez-Lorente G. Hydrolysis of fish oil by hyperactivated rhizomucor miehei lipase immobilized by multipoint anion exchange. Biotechnol Prog. 2011;27:961–8.
Article
CAS
Google Scholar
Aloulou A, Puccinelli D, De Caro A, Leblond Y, Carrière FA. Comparative study on two fungal lipases from Thermomyces lanuginosus and Yarrowia lipolytica shows the combined effects of detergents and pH on lipase adsorption and activity. Biochim Biophys Acta. 2007;1771:1446–56.
Article
CAS
Google Scholar
Moreno-Pérez S, Orrego AH, Romero-Fernández M, Trobo-Maseda L. Martins-DeOliveira S, Munilla R, Fernández-Lorente G, Guisan JM. Intense PEGylation of enzyme surfaces. Methods Enzymol. 2016;571:55–72.
Article
Google Scholar