Olorunniji FJ, Rosser SJ, Stark WM. Site-specific recombinases: molecular machines for the genetic revolution. Biochem J. 2016;473(6):673–84.
Article
CAS
Google Scholar
Grindley ND, Whiteson KL, Rice PA. Mechanisms of site-specific recombination. Annu Rev Biochem. 2006;75:567–605.
Article
CAS
Google Scholar
Thyagarajan B, Olivares EC, Hollis RP, Ginsburg DS, Calos MP. Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol. 2001;21(12):3926–34.
Article
CAS
Google Scholar
Bischof J, Maeda RK, Hediger M, Karch F, Basler K. An optimized transgenesis system for drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci U S A. 2007;104(9):3312–7.
Article
CAS
Google Scholar
Hirano N, Muroi T, Takahashi H, Haruki M. Site-specific recombinases as tools for heterologous gene integration. Appl Microbiol Biotechnol. 2011;92(2):227–39.
Article
CAS
Google Scholar
Khaleel T, Younger E, McEwan AR, Varghese AS, Smith MC. A phage protein that binds phiC31 integrase to switch its directionality. Mol Microbiol. 2011;80(6):1450–63.
Article
CAS
Google Scholar
Petersen KV, Martinussen J, Jensen PR, Solem C. Repetitive, marker-free, site-specific integration as a novel tool for multiple chromosomal integration of DNA. Appl Environ Microbiol. 2013;79(12):3563–9.
Article
CAS
Google Scholar
Yagil E, Dolev S, Oberto J, Kislev N, Ramaiah N, Weisberg RA. Determinants of site-specific recombination in the lambdoid coliphage HK022. An evolutionary change in specificity. J Mol Biol. 1989;207(4):695–717.
Article
CAS
Google Scholar
Azaro MA, Landy A. In: Craig RC NL, Gellert M, Lambowitz AM, editors. Mobile DNA II. Washington, DC: ASM Press; 2002. p. 118–48.
Chapter
Google Scholar
Weisberg RA, Gottesmann ME, Hendrix RW, Little JW. Family values in the age of genomics: comparative analyses of temperate bacteriophage HK022. Annu Rev Genet. 1999;33:565–602.
Article
CAS
Google Scholar
Groth AC, Calos MP. Phage integrases: biology and applications. J Mol Biol. 2004;335(3):667–78.
Article
CAS
Google Scholar
Smith MC, Brown WR, McEwan AR, Rowley PA. Site-specific recombination by phiC31 integrase and other large serine recombinases. Biochem Soc Trans. 2010;38(2):388–94.
Article
CAS
Google Scholar
Tungsuchat T, Kuroda H, Narangajavana J, Maliga P. Gene activation in plastids by the CRE site-specific recombinase. Plant Mol Biol. 2006;61(4–5):711–8.
Article
CAS
Google Scholar
Nakano M, Odaka K, Ishimura M, Kondo S, Tachikawa N, Chiba J, Kanegae Y, Saito I. Efficient gene activation in cultured mammalian cells mediated by FLP recombinase-expressing recombinant adenovirus. Nucleic Acids Res. 2001;29(7):E40.
Article
CAS
Google Scholar
Qureshi SA. Beta-lactamase: an ideal reporter system for monitoring gene expression in live eukaryotic cells. BioTechniques. 2007;42(1):91–6.
Article
CAS
Google Scholar
Collinet B, Herve M, Pecorari F, Minard P, Eder O, Desmadril M. Functionally accepted insertions of proteins within protein domains. J Biol Chem. 2000;275(23):17428–33.
Article
CAS
Google Scholar
Vandevenne M, Filee P, Scarafone N, Cloes B, Gaspard G, Yilmaz N, Dumoulin M, Francois JM, Frere JM, Galleni M. The Bacillus licheniformis BlaP beta-lactamase as a model protein scaffold to study the insertion of protein fragments. Protein Sci. 2007;16(10):2260–71.
Gersbach CA, Gaj T, Gordley RM, Barbas CF, 3rd. Directed evolution of recombinase specificity by split gene reassembly. Nucleic Acids Res 2010;38(12):4198-206.
Kadonaga JT, Gautier AE, Straus DR, Charles AD, Edge MD, Knowles JR. The role of the beta-lactamase signal sequence in the secretion of proteins by Escherichia coli. J Biol Chem. 1984;259(4):2149–54.
CAS
Google Scholar
Itoh Y, Kanoh K, Nakamura K, Takase K, Yamane K. Artificial insertion of peptides between signal peptide and mature protein: effect on secretion and processing of hybrid thermostable alpha-amylases in Bacillus Subtilis and Escherichia coli cells. J Gen Microbiol. 1990;136(8):1551–8.
Valens M, Penaud S, Rossignol M, Cornet F, Boccard F. Macrodomain organization of the Escherichia coli chromosome. EMBO J. 2004;23(21):4330–41.
Article
CAS
Google Scholar
Thiel A, Valens M, Vallet-Gely I, Espeli O, Boccard F. Long-range chromosome organization in E. coli: a site-specific system isolates the Ter macrodomain. PLoS Genet. 2012;8(4):e1002672.
Article
CAS
Google Scholar
Val ME, Skovgaard O, Ducos-Galand M, Bland MJ, Mazel D. Genome engineering in Vibrio cholerae: a feasible approach to address biological issues. PLoS Genet. 2012;8(1):e1002472.
Soler-Bistue A, Mondotte JA, Bland MJ, Val ME, Saleh MC, Mazel D. Genomic location of the major ribosomal protein gene locus determines Vibrio cholerae global growth and infectivity. PLoS Genet. 2015;11(4):e1005156.
Val ME, Marbouty M, de Lemos MF, Kennedy SP, Kemble H, Bland MJ, Possoz C, Koszul R, Skovgaard O, Mazel D. A checkpoint control orchestrates the replication of the two chromosomes of Vibrio cholerae. Sci Adv. 2016;2(4):e1501914.
Sutcliffe JG. Nucleotide sequence of the ampicillin resistance gene of Escherichia coli plasmid pBR322. Proc Natl Acad Sci U S A. 1978;75(8):3737–41.
Article
CAS
Google Scholar
Kolot M, Malchin N, Elias A, Gritsenko N, Yagil E. Site promiscuity of coliphage HK022 integrase as tool for gene therapy. Gene Ther. 2015;22(7):602.
Article
CAS
Google Scholar
Nagaraja R, Weisberg RA. Specificity determinants in the attachment sites of bacteriophages HK022 and lambda. J Bacteriol. 1990;172(11):6540–50.
Article
CAS
Google Scholar
Demarre G, Guerout AM, Matsumoto-Mashimo C, Rowe-Magnus DA, Marliere P, Mazel D. A new family of mobilizable suicide plasmids based on broad host range R388 plasmid (IncW) and RP4 plasmid (IncPalpha) conjugative machineries and their cognate Escherichia coli host strains. Res Microbiol. 2005;156(2):245–55.
Article
CAS
Google Scholar
Rossignol M, Moulin L, Boccard F. Phage HK022-based integrative vectors for the insertion of genes in the chromosome of multiply marked Escherichia coli strains. FEMS Microbiol Lett. 2002;213(1):45–9.
Article
CAS
Google Scholar
Herrero M, de Lorenzo V, Timmis KN. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol. 1990;172(11):6557–67.
Article
CAS
Google Scholar
Groth AC, Olivares EC, Thyagarajan B, Calos MP. A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci U S A. 2000;97(11):5995–6000.
Article
CAS
Google Scholar
Brown WR, Lee NC, Xu Z, Smith MC. Serine recombinases as tools for genome engineering. Methods. 2011;53(4):372–9.
Article
CAS
Google Scholar
St-Pierre F, Cui L, Priest DG, Endy D, Dodd IB, Shearwin KE. One-step cloning and chromosomal integration of DNA. ACS Synth Biol. 2013;2(9):537–41.
Article
CAS
Google Scholar
Pradel N, Delmas J, Wu LF, Santini CL, Bonnet R. Sec- and tat-dependent translocation of beta-lactamases across the Escherichia coli inner membrane. Antimicrob Agents Chemother. 2009;53(1):242–8.
Article
CAS
Google Scholar
Li P, Beckwith J, Inouye H. Alteration of the amino terminus of the mature sequence of a periplasmic protein can severely affect protein export in Escherichia coli. Proc Natl Acad Sci U S A. 1988;85(20):7685–9.
Article
CAS
Google Scholar
Pluckthun A, Knowles JR. The consequences of stepwise deletions from the signal-processing site of beta-lactamase. J Biol Chem. 1987;262(9):3951–7.
CAS
Google Scholar
Barkocy-Gallagher GA, Bassford PJ Jr. Synthesis of precursor maltose-binding protein with proline in the +1 position of the cleavage site interferes with the activity of Escherichia coli signal peptidase I in vivo. J Biol Chem. 1992;267(2):1231–8.
CAS
Google Scholar
Choo KH, Tan TW, Ranganathan S. SPdb--a signal peptide database. BMC Bioinf. 2005;6:249.
Article
Google Scholar
Choo KH, Ranganathan S. Flanking signal and mature peptide residues influence signal peptide cleavage. BMC Bioinf. 2008;(9, Suppl 12):S15.
Zacchi P, Sblattero D, Florian F, Marzari R, Bradbury AR. Selecting open reading frames from DNA. Genome Res. 2003;13(5):980–90.
Article
CAS
Google Scholar
Seehaus T, Breitling F, Dubel S, Klewinghaus I, Little M. A vector for the removal of deletion mutants from antibody libraries. Gene. 1992;114(2):235–7.
Article
CAS
Google Scholar
Colloms SD, Merrick CA, Olorunniji FJ, Stark WM, Smith MC, Osbourn A, Keasling JD, Rosser SJ. Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination. Nucleic Acids Res. 2014;42(4):e23.
Article
CAS
Google Scholar
Duportet X, Wroblewska L, Guye P, Li Y, Eyquem J, Rieders J, Rimchala T, Batt G, Weiss R. A platform for rapid prototyping of synthetic gene networks in mammalian cells. Nucleic Acids Res. 2014;42(21):13440–51.
Article
CAS
Google Scholar
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6(5):343–5.
Article
CAS
Google Scholar
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31(13):3406–15.
Article
CAS
Google Scholar
Ferrieres L, Hemery G, Nham T, Guerout AM, Mazel D, Beloin C, Ghigo JM. Silent mischief: bacteriophage mu insertions contaminate products of Escherichia coli random mutagenesis performed using suicidal transposon delivery plasmids mobilized by broad-host-range RP4 conjugative machinery. J Bacteriol. 2010;192(24):6418–27.
Article
CAS
Google Scholar
Biskri L, Bouvier M, Guerout AM, Boisnard S, Mazel D. Comparative study of class 1 integron and Vibrio cholerae superintegron integrase activities. J Bacteriol. 2005;187(5):1740–50.
Cohen SN, Chang AC. Revised interpretation of the origin of the pSC101 plasmid. J Bacteriol. 1977;132(2):734–7.
CAS
Google Scholar
Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–19.
Article
CAS
Google Scholar
Guzman LM, Belin D, Carson MJ, Beckwith J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol. 1995;177(14):4121–30.
Article
CAS
Google Scholar