Pandey DP, Gerdes K. Toxin-antitoxin loci are highly abundant in free living but lost from host-associated prokaryotes. Nucleic Acids Res. 2005;33:966–76.
Article
CAS
Google Scholar
Engelberg-Kulka H, Glaser G. Addiction modules and programmed cell death and anti-death in bacterial cultures. Annu Rev Microbiol. 1999;53:43–70.
Article
CAS
Google Scholar
Bravo A, de Torrontegui G, Diaz R. Identification of components of a new stability system of plasmid R1, ParD, that is close to the origin of replication of this plasmid. Mol Gen Genet. 1987;210:101–10.
Article
CAS
Google Scholar
Bravo A, Ortega S, de Torrontegui G, Diaz R. Killing of Escherichia coli cells modulated by components of the stability system ParD of plasmid R1. Mol Gen Genet. 1988;215:146–51.
Article
CAS
Google Scholar
Diago-Navarro E, Hernandez-Arriaga AM, López-Villarejo J, Muñoz-Gómez AJ, Kamphuis MB, Boelens R, et al. parD toxin-antitoxin system of plasmid R1—basic contributions, biotechnological applications and relationships with closely-related toxin-antitoxin systems. FEBS J. 2010;277:3097–117.
Article
CAS
Google Scholar
Gerdes K, Rasmussen PB, Molin S. Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells. Proc Natl Acad Sci U S A. 1986;83:3116–20.
Article
CAS
Google Scholar
Engelberg-Kulka H, Amitai S, Kolding-Gal I, Hazan R. Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet. 2006;2:e135. doi:10.1371/journal.pgen.0020135.
Article
Google Scholar
Christensen SK, Gerdes K. RelE toxins from bacteria and archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA. Mol Microbiol. 2003;48:1389–400.
Article
CAS
Google Scholar
Lewis K. Persister cells. Annu Rev Microbiol. 2010;64:357–72.
Article
CAS
Google Scholar
Fozo EM, Makarova KS, Shabalina SA, Yutin N, Koonin EV, Storz G. Abundance of type I toxin-antitoxin systems in bacteria: searches for new candidates and discovery of novel families. Nucleic Acids Res. 2010;38:3743–59.
Article
CAS
Google Scholar
Blower TR, Pei XY, Short FL, Fineran PC, Humphreys DP, Luisi BF, et al. A processed noncoding RNA regulates an altruistic bacterial antiviral system. Nat Struct Mol Biol. 2011;18:185–90.
Article
CAS
Google Scholar
Masuda H, Tan Q, Awano N, Yamaguchi Y, Inouye M. A novel membrane-bound toxin for cell division, CptA (YgfX), inhibits polymerization of cytoskeleton proteins, FtsZ and MreB, in Escherichia coli. FEMS Microbiol Lett. 2012;328:174–81.
Article
CAS
Google Scholar
Wang X, Lord DM, Cheng HY, Osbourne DO, Hong SH, Sanchez-Torres V, et al. A new type V toxin–antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat Chem Biol. 2012;8:855–62.
Article
CAS
Google Scholar
Makarova KS, Wolf YI, Koonin EV. Comprehensive comparative genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol Direct. 2009;4:19.
Article
Google Scholar
Bailey SE, Hayes F. Influence of operator site geometry on transcriptional control by the YefM-YoeB toxin-antitoxin complex. J Bacteriol. 2009;191:762–72.
Article
CAS
Google Scholar
Mutschler H, Gebhardt M, Shoeman RL, Meinhart A. A novel mechanism of programmed cell death in bacteria by toxin-antitoxin systems corrupts peptidoglycan synthesis. PLoS Biol. 2011;9:e1001033.
Article
CAS
Google Scholar
Kristoffersen P, Jensen GB, Gerdes K, Piškur J. Bacterial toxin antitoxin gene system as containment control in yeast cells. Appl Environ Microbiol. 2000;66:5524–6.
Article
CAS
Google Scholar
Yamamoto TAM, Gerdes K, Tunnacliffe A. Bacterial toxin RelE induces apoptosis in human cells. FEBS Lett. 2002;519:191–4.
Article
CAS
Google Scholar
de la Cueva MG, Mills AD, Clay-Farrace L, Diaz-Orejas R, Laskey RA. Regulatable killing of eukaryotic cells by the prokaryotic proteins Kid and Kis. EMBO J. 2003;22:246–51.
Article
Google Scholar
Nehlsen K, Herrmann S, Zauers J, Hauser H, Wirth D. Toxin-antitoxin based transgene expression in mammalian cells. Nucleic Acids Res. 2010;33:e32.
Article
Google Scholar
Zielenkiewicz U, Kowalewska M, Kaczor C, Ceglowski P. In vivo interactions between toxin-antitoxin proteins epsilon and zeta of streptococcal plasmid pSM19035 in Saccharomyces cerevisiae. J Bacteriol. 2009;191:3677–84.
Article
CAS
Google Scholar
Chan WT, Neito C, Harikrishna JA, Khoo SK, Othman RY, Espinosa M, et al. Genetic regulation of the yefM-yoeBspn toxin-antitoxin locus of Streptococcus pneumoniae. J Bacteriol. 2011;193:4612–25.
Article
CAS
Google Scholar
Nieto C, Pellicer T, Balsa D, Christensen SK, Gerdes K, Espinosa M. The chromosomal relBE2 toxin-antitoxin locus of Streptococcus pneumoniae: characterization and use of a bioluminescence resonance energy transfer assay to detect toxin-antitoxin interaction. Mol Microbiol. 2006;59:1280–96.
Article
CAS
Google Scholar
Nieto C, Sadowy E, de la Campa AG, Hryniewicz W, Espinosa M. The relBE2Spn toxin-antitoxin system of Streptococcus pneumoniae: role in antibiotic tolerance and functional conservation in clinical isolates. PLoS One. 2010;5:e11289.
Article
Google Scholar
Nieto C, Cherny I, Khoo SK, de Lacoba MG, Chan WT, Yeo CC, et al. The yefM-yoeB toxin-antitoxin systems of Escherichia coli and Streptococcus pneumoniae: functional and structural correlation. J Bacteriol. 2007;189:1266–78.
Article
CAS
Google Scholar
Khoo SK, Loll B, Chan WT, Shoeman RL, Ngoo L, Yeo CC, et al. Molecular and structural characterization of the PezAT chromosomal toxin-antitoxin system of the human pathogen Streptococcus pneumoniae. J Biol Chem. 2007;282:19606–18.
Article
CAS
Google Scholar
Brand L, Horler M, Nuesch E, Vassalli S, Barrell P, Yang W, et al. A Versatile and Reliable Two-Component System for Tissue-Specific Gene Induction in Arabidopsis. Plant Physiol. 2006;141:1194–204.
Article
CAS
Google Scholar
Gerdes K, Christensen SK, Lobner-Olesen A. Prokaryotic toxin-antitoxin stress response loci. Nat Rev Microbiol. 2005;3:371–82.
Article
CAS
Google Scholar
Christensen SK, Mikkelsen M, Pedersen K, Gerdes K. ReIE, a global inhibitor of translation, is activated during nutritional stress. Proc Natl Acad Sci U S A. 2001;98:14328–33.
Article
CAS
Google Scholar
Pennell RI, Lamb C. Programmed cell death in plants. Plant Cell. 1997;9:1157–68.
Article
CAS
Google Scholar
McCabe PF, Levine A, Meijer PJ, Tapon NA. A programmed cell death pathway activated in carrot cells cultured at low density. Plant J. 1997;12:267–80.
Article
CAS
Google Scholar
Orzáez D, Granell A. DNA fragmentation is regulated by ethylene during carpel senescence in Pisum sativum. Plant J. 1997;11:137–44.
Article
Google Scholar
O'Brien IEW, Baguley BC, Murray BG, Morris BAM, Ferguson IB. Early stages of the apoptotic pathway in plant cells are reversible. Plant J. 1998;13:803–14.
Article
Google Scholar
Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306.
Article
CAS
Google Scholar
Takagi H, Kakuta Y, Okada T, Yao M, Tanaka I, Kimura M. Crystal structure of archaeal toxin-antitoxin RelE-RelB complex with implications for toxin activity and antitoxin effects. Nat Struct Mol Biol. 2005;12:327–31.
Article
CAS
Google Scholar
Mariani C, De Beuckeleer M, Truettner J, Leemans J, Goldberg RB. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature. 1990;347:737–41.
Article
CAS
Google Scholar
Mariani C, Gossele V, De beuckeleer M, De block M, Goldberg RB, Greef W, et al. A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature. 1992;357:384–7.
Article
CAS
Google Scholar
Hartley RW. Barnase and barstar: two small proteins to fold and fit together. Trends Biochem Sci. 1989;14:450–4.
Article
CAS
Google Scholar
Schreiber G, Fersht AR. Energetics of protein-protein interactions: analysis of the barnase-barstar interface by single mutations and double mutant cycles. J Mol Biol. 1995;248:478–86.
CAS
Google Scholar
Jyothishwaran G, Kotresha D, Selvaraj T, Srideshikan SM, Rajvanshi PK, Jayabaskaran C. A modified freeze-thaw method for efficient transformation of Agrobacterium tumefaciens. Curr Sci. 2006;93:770–2.
Google Scholar
Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–43.
Article
CAS
Google Scholar
Davis AM, Hall A, Millar AJ, Darrah C, Davis SJ. Protocol: Streamlined sub-protocols for floral-dip transformation and selection of transformants in Arabidopsis thaliana. Plant Methods. 2009;5:3.
Article
Google Scholar
Rogers SO, Bendich AJ. Extraction of total cellular DNA from plants, algae and fungi. Plant molecular biology manual: Springer; 1994. p. 183–90.
Google Scholar
Curtis MD, Grossniklaus U. Thale cress (Arabidopsis thaliana) genome. In: Meyers RA, editor. Encyclopedia of Molecular Cell Biology and Molecular Medicine. Weinheim: Wiley-VCH; 2005. p. 245–82.
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods. 2001;25:402–8.
Article
CAS
Google Scholar