Merino E, Balbas P, Recillas F, Becerril B, Valle F, Bolivar F: Carbon regulation and the role in nature of Escherichia coli penicillin acylase (PAC) gene. Mol Microbiol. 1992, 6: 2175-2182. 10.1111/j.1365-2958.1992.tb01391.x.
Article
CAS
Google Scholar
Choi KS, Kim JA, Kang HS: Effects of site directed mutations on processing and activities of penicillin G acylase from Escherichia coli ATCC 11105. J Bacteriol. 1992, 174: 6270-6276.
CAS
Google Scholar
Sizmann D, Keilmann C, Böck A: Primary structure requirements for the maturation in vivo of penicillin acylase from Escherichia coli ATCC 11105. Eur J Biochem. 1990, 192: 143-151. 10.1111/j.1432-1033.1990.tb19207.x.
Article
CAS
Google Scholar
Xu Y, Weng C-L, Narayanan N, Hsieh M-Y, Anderson WA, Scharer JM, Moo-Young M, Chou CP: Chaperone-mediated folding and maturation of the penicillin acylase precursor in the cytoplasm of Escherichia coli. Appl Environ Microbiol. 2005, 71: 6247-6253. 10.1128/AEM.71.10.6247-6253.2005.
Article
CAS
Google Scholar
Xu Y, Hsieh M-Y, Narayanan N, Anderson WA, Scharer JM, Moo-Young M, Chou CP: Cytoplasmic overexpression, folding, and processing of penicillin acylase precursor in Escherichia coli. Biotechnol Prog. 2005, 21: 1357-1365. 10.1021/bp0501120.
Article
CAS
Google Scholar
Pan K-L, Hsiao H-C, Weng C-L, Wu M-S, Chou CP: Roles of DegP in prevention of protein misfolding in the periplasm upon overexpression of penicillin acylase in Escherichia coli. J Bacteriology. 2003, 185: 3020-3030. 10.1128/JB.185.10.3020-3030.2003.
Article
CAS
Google Scholar
Hunt PD, Tolley SP, Ward RJ, Hill CP, Dodson GG: Expression, purification and crystallization of penicillin G acylase from Escherichia coli ATCC 11105. Protein Eng Des Sel. 1990, 3: 635-639. 10.1093/protein/3.7.635.
Article
CAS
Google Scholar
Duggleby HJ, Tolley SP, Hill CP, Dodson EJ, Dodson G, Moody PCE: Penicillin acylase has a single-amino-acid catalytic centre. Nature. 1995, 373: 264-268. 10.1038/373264a0.
Article
CAS
Google Scholar
Alkema WBL, Hensgens CMH, Kroezinga EH, de Vries E, Floris R, van der Laan J-M, Dijkstra BW, Janssen DB: Characterization of the β-lactam binding site of penicillin acylase of Escherichia coli by structural and site directed mutagenesis studies. Protein Eng Des Sel. 2000, 13: 857-863. 10.1093/protein/13.12.857.
Article
CAS
Google Scholar
Alkema WBL, Prins AK, de Vries E, Janssen DB: Role of αArg(145) and βArg(263) in the active site of penicillin acylase of Escherichia coli. Biochem J. 2002, 365: 303-309. 10.1042/BJ20011468.
Article
CAS
Google Scholar
Hewitt L, Kasche V, Lummer K, Lewis RJ, Murshudov GN, Verma CS, Dodson GG, Wilson KS: Structure of a slow processing precursor penicillin acylase from Escherichia coli reveals the linker peptide blocking the active site cleft. J Mol Biol. 2000, 302: 887-898. 10.1006/jmbi.2000.4105.
Article
CAS
Google Scholar
McVey CE, Walsh MA, Dodson GG, Wilson KS, Brannigan JA: Crystal structures of penicillin acylase enzyme-substrate complexes: structural insights into the catalytic mechanism. J Mol Biol. 2001, 313: 139-150. 10.1006/jmbi.2001.5043.
Article
CAS
Google Scholar
Alkema WBL, Dijkhuis A-J, de Vries E, Janssen DB: The role of hydrophobic active site residues in substrate specificity and acyl transfer activity of penicillin acylase. Eur J Biochem. 2002, 269: 2093-2100. 10.1046/j.1432-1033.2002.02857.x.
Article
CAS
Google Scholar
Done SH, Brannigan JA, Moody PCE, Hubbard RE: Ligand-induced conformational change in penicillin acylase. J Mol Biol. 1998, 284: 463-475. 10.1006/jmbi.1998.2180.
Article
CAS
Google Scholar
Sio CF, Quax WJ: Improved β-lactam acylases and their use as industrial biocatalysts. Curr Opin Biotechnol. 2004, 15: 349-355. 10.1016/j.copbio.2004.06.006.
Article
CAS
Google Scholar
Bruggink A, Roos EC, de Vroom E: Penicillin acylase in the industrial production of β-lactam antibiotics. Org Process Res Dev. 1998, 2: 128-133. 10.1021/op9700643.
Article
CAS
Google Scholar
Fuganti C, Rosell CM, Rigoni R, Servi S, Tagliani A, Terreni M: Penicillin acylase mediated syntesis of formyl cefamandole. Biotechnol Lett. 1992, 14: 543-546. 10.1007/BF01023937.
Article
CAS
Google Scholar
Justiz HO, Fernandez-Lafuente R, Guisan JM, Negri P, Pagani G, Pregnolato M, Terreni M: One-pot chemoenzymatic synthesis of 3'-functionalized cephalosporines (cefazolin) by three consecutive biotransformations in fully aqueous medium. J Org Chem. 1997, 62: 9099-9106. 10.1021/jo971166u.
Article
CAS
Google Scholar
Kasche V: Mechanism and yields in enzyme catalysed equilibrium and kinetically controlled synthesis of β-lactam antibiotics, peptides and other condensation products. Enz Microb Technol. 1986, 8: 4-16. 10.1016/0141-0229(86)90003-7.
Article
CAS
Google Scholar
Youshko MI, Chilov GG, Shcherbakova TA, Svedas VK: Quantitative characterization of the nucleophile reactivity in penicillin acylase-catalyzed acyl transfer reactions. Biochim Biophys Acta. 2002, 1599: 134-140.
Article
CAS
Google Scholar
Chou CP, Tseng J-H, Lin M-I, Lin H-K, Yu C-C: Manipulation of carbon assimilation with respect to expression of the pac gene for improving production of penicillin acylase in Escherichia coli. J Biotechnol. 1999, 69: 27-38. 10.1016/S0168-1656(98)00202-8.
Article
CAS
Google Scholar
De Leon A, Galindo E, Ramirez OT: A postfermentative stage improves penicillin acylase production by recombinant E. coli. Biotechnol Lett. 1996, 18: 927-932. 10.1007/BF00154623.
Article
CAS
Google Scholar
Dürckheimer W, Blumbach J, Lattrell R, Scheunemann KH: Recent developments in the field of β-lactam antibiotics. Angew Chem Int Ed Eng. 1985, 24: 180-202. 10.1002/anie.198501801.
Article
Google Scholar
Montes T, Grazú V, López-Gallego F, Hermoso JA, García JL, Manso I, Galán B, González R, Fernández-Lafuente R, Guisán JM: Genetic modification of the penicillin G acylase surface to improve its reversible immobilization on ionic exchangers. Appl Environ Microbiol. 2007, 73: 312-319. 10.1128/AEM.02107-06.
Article
CAS
Google Scholar
Terreni M, Pagani G, Ubiali D, Fernandez-Lafuente R, Mateo C, Guisan JM: Modulation of penicillin acylase properties via immobilization techniques: one-pot chemoenzymatic synthesis of cephamandole from cephalosporin C. Bioorg Med Chem Lett. 2001, 11: 2429-2432. 10.1016/S0960-894X(01)00463-2.
Article
CAS
Google Scholar
Huang W, Wang J, Bhattacharyya D, Bachas LG: Improving the activity of immobilized subtilisin by site specific attachment to surfaces. Anal Chem. 1997, 69: 4601-4607. 10.1021/ac970390g.
Article
CAS
Google Scholar
Mateo C, Abian O, Bernedo M, Cuenca E, Fuentes M, Fernandez-Lorente G, Palomo JM, Grazu V, Pessela BCC, Giacomini C, Irazoqui G, Villarino A, Ovsejevi K, Batista-Viera F, Fernandez-Lafuente R, Guisan JM: Some special features of glyoxyl supports to immobilize proteins. Enz Microb Technol. 2005, 37: 456-462. 10.1016/j.enzmictec.2005.03.020.
Article
CAS
Google Scholar
Abian O, Grazu V, Hermoso J, Gonzalez R, Garcia JL, Fernandez-Lafuente R, Guisan JM: Stabilization of penicillin G acylase from Escherichia coli: site directed mutagenesis of the protein surface to increase multipoint covalent attachment. Appl Environ Microbiol. 2004, 70: 1249-1251. 10.1128/AEM.70.2.1249-1251.2004.
Article
CAS
Google Scholar
Scaramozzino F, Estruch I, Rossolillo P, Terreni M, Albertini AM: Improvement of catalytic properties of Escherichia coli penicillin G acylase immobilized on glyoxyl agarose by addition of a six-amino-acid-tag. Appl Environ Microbiol. 2005, 71: 8937-8940. 10.1128/AEM.71.12.8937-8940.2005.
Article
CAS
Google Scholar
Sriubolmas N, Panbangred W, Sriurairatana S, Meevootisom V: Localization and characterization of inclusion bodies in recombinant Escherichia coli cells overproducing penicillin G acylase. Appl Microbiol Biotechnol. 1997, 47: 373-378. 10.1007/s002530050943.
Article
CAS
Google Scholar
Polizzi KM, Chaparro-Riggers JF, Vazquez-Figueroa E, Bommarius AS: Structure-guided consensus approach to create a more thermostable penicillin G acylase. Biotechnol J. 2006, 1: 531-536. 10.1002/biot.200600029.
Article
CAS
Google Scholar
Guisan JM, Blanco RM, Fernandez-Lafuente R, Rosell CM, Alvaro G, Batista A: Enzyme stabilization by multipoint covalent attachment to activated pre-existing supports. Protein stability and stabilization of enzyme. Edited by: Van der Tweel WJJ, Harder A, Buitelaar RM. 1993, Elsevier Science Publishers, Amsterdam, The Netherlands, 55-62.
Chapter
Google Scholar
Alvaro G, Fernandez-Lafuente R, Blanco RM, Guisan JM: Immobilization-stabilization of penicillin G acylase from Escherichia coli. Appl Biochem Biotechnol. 1990, 26: 181-195.
Article
CAS
Google Scholar
Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3.
Article
CAS
Google Scholar
Guisán JM: Aldehyde-agarose gels as activated supports for immobilization-stabilization of enzymes. Enzyme Microb Technol. 1988, 10: 375-382. 10.1016/0141-0229(88)90018-X.
Article
Google Scholar
de Marco A, Deuerling E, Mogk A, Tomoyasu T, Bukau B: Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC Biotechnol. 2007, 7: 32-10.1186/1472-6750-7-32.
Article
Google Scholar