Lindeman LR, Rocchiccioli C: Ethanol in Brazil: Brief summary of the state of the industry in 1977. Biotechnol Bioeng. 1979, 21: 1107-1119. 10.1002/bit.260210703.
Article
Google Scholar
Kadam KL, McMillan JD: Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresour Technol. 2003, 18: 17-25.
Article
Google Scholar
Wilke CR, Yang RD, Scamanna AF, Freitas RP: Raw material evaluation and process development studies for conversion of biomass to sugars and ethanol. Biotechnol Bioeng. 1981, 23: 163-183. 10.1002/bit.260230111.
Article
CAS
Google Scholar
Periyasamy S, Venkatachalam S, Ramasamy S, Srinivasan V: Production of bioethanol from sugar molasses using Saccharomyces cerevisiae. modern Appl Sc. 2009, 3: 32-37.
CAS
Google Scholar
Maisch WF, Sobolov M, Petricola AJ: Distilled beverages. Microbial Technology. Edited by: Peppler HJ, Perlman D. 1979, New York: Academic, 79-
Google Scholar
Sasson A: Feeding tomorrow’s world. 1990, Paris: UNESCO, 500-510.
Google Scholar
Shetty JK, Chotani G, Duan G, Bates D: Cassava as an alternative feedstock in the production of transportation fuel. Int Sugar J. 2007, 109: 3-11.
Google Scholar
Pandey A, Soccol CR, Nigam P, Soccol VT, Vanderberghe LPS, Mohan R: Biotechnological potential of agro-industrial residue. II: Cassava bagasse. Bioresour Technol. 2000, 74: 81-87. 10.1016/S0960-8524(99)00143-1.
Article
CAS
Google Scholar
Emilia-Abraham T, Krishnaswamy S, Ramakrishna SW: Effect of hydrolysis condition of cassava on oligosaccharide profile and alcohol fermentation. Starch-Starke. 1986, 39: 237-240.
Article
Google Scholar
Nguyen TLT, Gheewala SH, Garivait S: Energy balance and GHG-abatement cost of cassava utilization for fuel ethanol in Thialand. Energy Policy. 2007, 35: 4585-4596. 10.1016/j.enpol.2007.03.012.
Article
Google Scholar
Dai D, Hu Z, Pu G, Li H, Wang CT: Energy efficiency and potential of cassava fuel ethanol in ghangxi region of China. Energy Conver Manage. 2006, 47: 1686-1699. 10.1016/j.enconman.2005.10.019.
Article
CAS
Google Scholar
Fogarty WM, Kelly CT: Microbial amylase. Microbial Enzyme and Biotechnology. 1983, London: Applied Science Publisher, 1-90.
Google Scholar
Pandey A: Glucoamylase research: An overview. Starch-Starke. 1995, 47: 439-445. 10.1002/star.19950471108.
Article
CAS
Google Scholar
Prabakaran M, Thennarasu V, Mangala RA, Bharathidasan R, Chandrakala N, Mohan N: Comparative studies on enzyme activities of wild and mutant strains isolated from sugarcane field. Indian J Sci Technol. 2009, 2: 6846-6849.
Google Scholar
Dunn GM: Nutritional requirements of microorganisms. Comprehensive Biotechnology. Edited by: Moo-Young M. 1985, New York: Pergamon Press, Oxford, 1: 113-125.
Google Scholar
Fatima B, Ali S: Kinetics of improved 1, 4-alpha-D-glucan glucohydrolase biosynthesis from a newly isolated Aspergillus oryzae IIB-6 and parameter significance analysis by 2-factorial design. Springer Plus. 2012, 1: 32-10.1186/2193-1801-1-32.
Article
Google Scholar
Puri S, Arora M, Sarao L: Production and optimization of amylase and glucoamylase using Aspergillus oryzae under solid state fermentation. Int J Res Pure Appl Microbiol. 2013, 3: 83-88.
Google Scholar
Singh S, Singh S, Bali V, Sharma L, Mangla J: Production of fungal amylases using cheap, readily available agriresidues, for potential application in textile industry. BioMed Res Int. 2014, http://dx.doi.org/10.1155/2014/215748.
Google Scholar
Gudi SK, Gurramkonda C, Rather G, Chandra MGS, Mangamuri UK, Podha S, Choi Y: Glucoamylase from a newly isolated Aspergillus niger FME: Detergent-mediated production, purification, and characterization. J Korean Soc Appl Biol Chem. 2013, 56: 427-433. 10.1007/s13765-012-3001-9.
Article
CAS
Google Scholar
Shanavas S, Padmaja G, Moorthy SN, Sajeev MS, Sheriff JT: Process optimization for bioethanol production from cassava starch using novel eco-friendly enzymes. Biomass Bioenergy. 2011, 35: 901-909. 10.1016/j.biombioe.2010.11.004.
Article
CAS
Google Scholar
Rattanachomsri U, Tanapongpipat S, Eurwilaichitr L, Champreda V: Simultaneous non thermal saccharification of cassava pulp by multi enzyme activity and ethanol fermentation by Candida tropicalis. J Biosci Bioeng. 2009, 107: 488-493. 10.1016/j.jbiosc.2008.12.024.
Article
CAS
Google Scholar
Wook CG, Um HJ, Kim M, Kim Y, Kang HW, Chung BW, Kim YH: Isolation and characterization of ethanol producing Shizosaccharomyces pombe CHFY0201. J Microbiol Biotechnol. 2010, 20: 828-834.
Google Scholar
Ziska LH, Runion GB, Tomecek M, Prior SA, Torbet A, Sicher R: An evaluation of cassava, sweet potato and field corn as potential carbohydrate sources for bioethanol production in Alabama and Maryland. Biomass Bioenergy. 2009, 33: 1503-1508. 10.1016/j.biombioe.2009.07.014.
Article
CAS
Google Scholar
Feroza B, Begum S, Hossain M: Production of glucoamylase by Aspergillus niger in liquid culture and determination of its cultural condition. Bangladesh J Sci Ind Res. 1998, 33: 309-311.
CAS
Google Scholar
Ali S, Mahmood S, Alam R, Hossain Z: Culture condition for production of glucoamylase from rice bran by Aspergillus terreus. World J Appl Microbiol Biotech. 1989, 5: 525-532. 10.1007/BF01741829.
Article
CAS
Google Scholar
Ghosh A, Chatterjee B, Das A: Induction and catabolite repression of high affinity glucoamylase in Aspergillus terreus strain 4. J Gen Microbiol. 1990, 136: 1307-1311. 10.1099/00221287-136-7-1307.
Article
CAS
Google Scholar
Kumar S, Satyanarayana P: Statistical optimization of thermostable and neutral glucoamylase produced by a thermophillic mould Thermomucor indicae-seudaticae in solid state fermentation. Worl J Microbiol Biotechnol. 2004, 20: 895-902. 10.1007/s11274-004-2891-z.
Article
CAS
Google Scholar
Mohamed L, Zakaria M, Ali A, Senhaji W, Muhamed O, Mohamed E, Hassan BEL, Mohamed J: Optimization of growth and extracellular glucoamylase produced by Candida fumata isolate. Afr J Biotechnol. 2007, 6: 2590-2595.
CAS
Google Scholar
Slivinski CT, Machado AVL, Iulek J, Ayub RA, de Almeida MM: Biochemical characterization of a glucoamylase from Aspergillus niger produced by solid-state fermentation. Braz Arch Biol Technol. 2011, 54: 559-568. 10.1590/S1516-89132011000300018.
Article
CAS
Google Scholar
da Silva BW, Peralta WM: Purification and characterization of thermostable glucoamylase from Aspergillus fumigatus. Can J Microbiol. 1998, 44: 493-497. 10.1139/w98-019.
Article
Google Scholar
Doss A, Anand SP: Purification and optimization of fungal amylase from litter samples of Western Ghats, Coimbatore, Tamilnadu (India). J Sci Res Rev. 2013, 2: 001-004. 10.9780/2249-894X/262013/262.
Article
Google Scholar
Varalakshmi KN, Kumudini BS, Nandini BS, Solomon J, Suhas R, Mahesh B, Kavitha AP: Production and characterization of α-amylase from Aspergillu sniger JGI 24 isolated in Banglore. Pol J Microbiol. 2009, 58: 29-36.
CAS
Google Scholar
Koç Ö, Metin K: Purification and characterization of a thermostable glucoamylase produced by Aspergillus flavus HBF34. Afr J Biotechnol. 2010, 9: 3414-3424.
Google Scholar
Littlewood J, Wang L, Turnbull C, Murphy RJ: Techno-economic potential of bioethanol from bamboo in China. Biotechnol Biofuels. 2013, 6: 173-10.1186/1754-6834-6-173.
Article
Google Scholar
Sun Y, Cheng J: Hydrolysis of lignocellulosic materials for ethanol production. Rev Bioresour Tehnol. 2002, 83: 1-11. 10.1016/S0960-8524(01)00212-7.
Article
CAS
Google Scholar
Kaar WE, Holtzapple MT: Using lime pretreatment to facilitate the enzymatic hydrolysis of corn stover. Biomass Bioenergy. 2000, 18: 189-199. 10.1016/S0961-9534(99)00091-4.
Article
CAS
Google Scholar
Maiorella BL: Ethanol. Comprehensive Biotechnology. 1985, New York: Pergamon Oxford, 3: 861-909.
Google Scholar
Wi SW, Choi IS, Kim KH, Kim HM, Bae H: Bioethanol production from rice straw by popping pretreatment. Biotechnol Biofuels. 2013, 6: 166-10.1186/1754-6834-6-166.
Article
Google Scholar
Bej B, Basu RK, Ash SN: Kinetic studies on acid catalyzed hydrolysis of starch. J Sci Ind Res. 2008, 67: 295-298.
CAS
Google Scholar
Wang YJ, Truong VD, Wang L: Structure and rheological properties of corn starch as affected by acid hydrolysis. Carbohyd Res. 2003, 52: 327-333.
Article
CAS
Google Scholar
Kunlan L, Lixin X, Jun L, Jun P, Gooying C, Zuwei X: Salt associated acid hydrolysis of starch to D-glucose under microwave irradiation. Carbohyd Res. 2001, 331: 9-12. 10.1016/S0008-6215(00)00311-6.
Article
CAS
Google Scholar
Thomas KC, Hynes SH, Ingledew WM: Practical and theoretical considerations in the production of high concentrations of alcohol by fermentations. Process Biochem. 1996, 31: 321-324. 10.1016/0032-9592(95)00073-9.
Article
CAS
Google Scholar
Jones AM, Ingledew WM: Fuel alcohol production: Optimization of temperature for efficient very high gravity fermentation. Appl Environ Microbial. 1994, 60: 1048-1051.
CAS
Google Scholar
Kimura A, Robyt JF: Reaction of enzyme with starch granules: Enhanced reaction of glucoamylase with gelatinized starch granules. Carbohydr Res. 1996, 288: 233-240.
Article
CAS
Google Scholar
Aggarwal NK, Yadav SK, Dhamija SS, Yadav BS: Optimization of enzymatic hydrolysis of pearlmillet for glucose production. Starch/ Stärke. 2001, 53: 330-335. 10.1002/1521-379X(200107)53:7<330::AID-STAR330>3.0.CO;2-6.
Article
CAS
Google Scholar
Soni SK, Rao MW, Das D: Studies on glucoamylase produced from Aspergillus awamori (NRRL-3112) and their effect on saccharification of potato starch. Indian J Exp Biol. 1995, 33: 525-532.
Google Scholar
Gohel V, Duan G, Maisuria VB: Impact of an acid fungal protease in high gravity fermentation for ethanol production using indian sorghum as a feedstock. Biotechnol Prog. 2013, 29: 329-336. 10.1002/btpr.1679.
Article
CAS
Google Scholar
Lin Y, Tanaka S: Ethanol fermentation from biomass resources: Current state and prospects. Appl Microbiol Biotechnol. 2006, 69: 627-642. 10.1007/s00253-005-0229-x.
Article
CAS
Google Scholar
Olsson L, Nielsen J: The role of metabolic engineering in the improvement of Saccharomyces cerevisiae: Utilization of industrial media. Enzyme Microb Tech. 2000, 26: 785-792. 10.1016/S0141-0229(00)00172-1.
Article
CAS
Google Scholar
Olsson L, Hahn-Hägerdal B: Fermentative performance of bacteria and yeast in lignocellulose hydrolysates. Process Biochem. 1993, 28: 249-257. 10.1016/0032-9592(93)80041-E.
Article
CAS
Google Scholar
Erdei B, Hancz D, Galbe M, Guido Z: SSF of steam-pretreated wheat straw with the addition of saccharified or fermented wheat meal in integrated bioethanol production. Biotechnol Biofuels. 2013, 6: 169-10.1186/1754-6834-6-169.
Article
Google Scholar
Nyanga LK, Nout MJR, Smid EJ, Boekhout T, Zwietering MH: Fermentation characteristics of yeasts isolated from traditionally fermented masau (Ziziphus mauritiana) fruits. Int J Food Microbiol. 2013, 166: 426-432. 10.1016/j.ijfoodmicro.2013.08.003.
Article
CAS
Google Scholar
Karmakar M, Ray RR: Saccharification of agro wastes by the endoglucanase of Rhizopus oryzae. Ann Biol Res. 2011, 2: 201-208.
Google Scholar
Nikolic S, Mojovic L, Rakin M, Pejin D: Ultrasound-assisted production of bioethanol by simultaneous saccharification and fermentation of corn meal. Food Chem. 2010, 122: 216-222. 10.1016/j.foodchem.2010.02.063.
Article
CAS
Google Scholar
Wu T, Wang F, Tang Q, Zhu Z: Arrowroot as a novel substrate for ethanol production by solid state simultaneous saccharification and fermentation. Biomass Bioenergy. 2010, 34: 1159-1164. 10.1016/j.biombioe.2010.03.002.
Article
CAS
Google Scholar
Murado MA, Pastrana L, Vázquez JA, Mirón J, González MP: Alcoholic chestnut fermentation in mixed culture. Compatibility criteria between Aspergillus oryzae and Sachharomyces cerevisiae strains. Bioresour Technol. 2008, 99: 7255-7263. 10.1016/j.biortech.2007.12.053.
Article
CAS
Google Scholar
Göksungur Y, Zorlu N: Production of ethanol from beet molasses by Ca-alginate immobilized yeast cells in a packed bed reactor. Turk J Biol. 2001, 25: 265-275.
Google Scholar
Sakurai A, Nishida Y, Saito H, Sakakibara M: Ethanol production by repeated batch culture using yeast cells immobilized within porous cellulose carriers. J Biosci Bioeng. 2000, 90: 526-529.
Article
CAS
Google Scholar
Collier L, Balows A, Sussman M: Topley & Wilson’s Microbiology and Microbial Infections. Edited by: Ajello L, Hay RJ. 1998, London: Arnold, Hodder Headline Group, 4: 9
Google Scholar
St-Germain G, Summerbell R: Identifying Filamentous Fungi - A Clinical Laboratory Handbook. 1996, Belmont, California: Star Publishing Company, 1
Google Scholar
Miller GL: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Annal Chem. 1959, 31: 426-428. 10.1021/ac60147a030.
Article
CAS
Google Scholar
Trinder P: Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem. 1969, 6: 24-28. 10.1177/000456326900600108.
Article
CAS
Google Scholar
Trinder P: Determination of glucose in blood using 4-amino phenazone as oxygen acceptor. JClin Pathol. 1969, 22: 246-
Article
CAS
Google Scholar
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the folin phenol reagent. J Biol Chem. 1951, 193: 265-375.
CAS
Google Scholar
Caputi A, Veda M, Brown T: Spectrophotometric determination of ethanol in wine. Am J Enol Vitic. 1968, 19: 160-165.
CAS
Google Scholar
Hassid WZ, Abraham S: Methods in enzymology III. 1957, New York: Academic Press, 34-35.
Book
Google Scholar
McGrance SJ, Cornell HJ, Rix CJ: A simple and rapid calorimetric method for the determination of amylase in starch products. Starch/Stärke. 1998, 50: 158-163.
Article
CAS
Google Scholar