Visser W, Scheffers WA, der Vegte WH B-v, van Dijken JP: Oxygen requirements of yeasts. Appl Environ Microbiol. 1990, 56 (12): 3785-3792.
CAS
Google Scholar
Jönsson L, Alriksson B, Nilvebrant N-O: Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels. 2013, 6 (1): 16-10.1186/1754-6834-6-16.
Article
Google Scholar
Festel GW: Biofuels - economic aspects. Chem Eng Technol. 2008, 31 (5): 715-720. 10.1002/ceat.200700335.
Article
CAS
Google Scholar
Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R: Hemicelluloses for fuel ethanol: a review. Bioresour Technol. 2010, 101 (13): 4775-4800. 10.1016/j.biortech.2010.01.088.
Article
CAS
Google Scholar
Soccol CR, Faraco V, Karp S, Vandenberghe LPS, Thomaz-Soccol V, Woiciechowski A, Pandey A: lignocellulosic bioethanol: current status and future perspectives. Biofuels: alternative feedstocks and conversion processes. Edited by: Pandey A, Larroche C, Ricke SC, Dussap CG, Gnansounou E. 2011, Oxford, UK: Elsevier Ltd, 101-122.
Chapter
Google Scholar
Sassner P, Galbe M, Zacchi G: Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenergy. 2008, 32 (5): 422-430. 10.1016/j.biombioe.2007.10.014.
Article
CAS
Google Scholar
Jeffries TW: Emerging technology for fermenting D-xylose. Trends Biotechnol. 1985, 3 (8): 208-212. 10.1016/0167-7799(85)90048-4.
Article
CAS
Google Scholar
Kötter P, Amore R, Hollenberg CP, Ciriacy M: Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet. 1990, 18 (6): 493-500. 10.1007/BF00327019.
Article
Google Scholar
Van Vleet JH, Jeffries TW: Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol. 2009, 20 (3): 300-306. 10.1016/j.copbio.2009.06.001.
Article
CAS
Google Scholar
Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF: Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol. 2007, 74 (5): 937-953. 10.1007/s00253-006-0827-2.
Article
Google Scholar
Camarasa C, Faucet V, Dequin S: Role in anaerobiosis of the isoenzymes for Saccharomyces cerevisiae fumarate reductase encoded by OSM1 and FRDS1. Yeast. 2007, 24 (5): 391-401. 10.1002/yea.1467.
Article
CAS
Google Scholar
Arikawa Y, Enomoto K, Muratsubaki H, Okazaki M: Soluble fumarate reductase isoenzymes from Saccharomyces cerevisiae are required for anaerobic growth. FEMS Microbiol Lett. 1998, 165 (1): 111-116. 10.1111/j.1574-6968.1998.tb13134.x.
Article
CAS
Google Scholar
Muratsubaki H, Enomoto K: One of the fumarate reductase isoenzymes from Saccharomyces cerevisiae is encoded by the OSM1 gene. Arch Biochem Biophys. 1998, 352 (2): 175-181. 10.1006/abbi.1998.0583.
Article
CAS
Google Scholar
Enomoto K, Ohki R, Muratsubaki H: Cloning and sequencing of the gene encoding the soluble fumarate reductase from Saccharomyces cerevisiae. DNA Res. 1996, 3 (4): 263-267. 10.1093/dnares/3.4.263.
Article
CAS
Google Scholar
Rossi C, Hauber J, Singer TP: Mitochondrial and cytoplasmic enzymes for the reduction of fumarate to succinate in yeast. Nature. 1964, 204 (4954): 167-170. 10.1038/204167a0.
Article
CAS
Google Scholar
Camarasa C, Grivet JP, Dequin S: Investigation by 13C-NMR and tricarboxylic acid (TCA) deletion mutant analysis of pathways for succinate formation in Saccharomyces cerevisiae during anaerobic fermentation. Microbiology. 2003, 149: 2669-2678. 10.1099/mic.0.26007-0.
Article
CAS
Google Scholar
Enomoto K, Arikawa Y, Muratsubaki H: Physiological role of soluble fumarate reductase in redox balancing during anaerobiosis in Saccharomyces cerevisiae. FEMS Microbiol Lett. 2002, 215 (1): 103-108. 10.1111/j.1574-6968.2002.tb11377.x.
Article
CAS
Google Scholar
Frand AR, Kaiser CA: The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Mol Cell. 1998, 1 (2): 161-170. 10.1016/S1097-2765(00)80017-9.
Article
CAS
Google Scholar
Pollard MG, Travers KJ, Weissman JS: Ero1p: A novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum. Mol Cell. 1998, 1 (2): 171-182. 10.1016/S1097-2765(00)80018-0.
Article
CAS
Google Scholar
Freedman RB: Protein disulfide isomerase - multiple roles in the modification of nascent secretory proteins. Cell. 1989, 57 (7): 1069-1072. 10.1016/0092-8674(89)90043-3.
Article
CAS
Google Scholar
Barlowe CK, Miller EA: Secretory protein biogenesis and traffic in the early secretory pathway. Genetics. 2013, 193 (2): 383-410. 10.1534/genetics.112.142810.
Article
CAS
Google Scholar
Frand AR, Kaiser CA: Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum. Mol Cell. 1999, 4 (4): 469-477. 10.1016/S1097-2765(00)80198-7.
Article
CAS
Google Scholar
Tu BP, Ho-Schleyer SC, Travers KJ, Weissman JS: Biochemical basis of oxidative protein folding in the endoplasmic reticulum. Science. 2000, 290 (5496): 1571-1574.
Article
CAS
Google Scholar
Tu BP, Weissman JS: The FAD- and O2-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. Mol Cell. 2002, 10 (5): 983-994. 10.1016/S1097-2765(02)00696-2.
Article
CAS
Google Scholar
Bernales S, Papa FR, Walter P: Intracellular signaling by the unfolded protein response. Annu Rev Cell Dev Biol. 2006, 22: 487-508. 10.1146/annurev.cellbio.21.122303.120200.
Article
CAS
Google Scholar
Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P: Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell. 2000, 101 (3): 249-258. 10.1016/S0092-8674(00)80835-1.
Article
CAS
Google Scholar
Runquist D, Hahn-Hägerdal B, Bettiga M: Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae. Microb Cell Fact. 2009, 8: 49-10.1186/1475-2859-8-49.
Article
Google Scholar
Salusjärvi L, Pitkänen JP, Aristidou A, Ruohonen L, Penttilä M: Transcription analysis of recombinant Saccharomyces cerevisiae reveals novel responses to xylose. Appl Biochem Biotechnol. 2006, 128 (3): 237-261. 10.1385/ABAB:128:3:237.
Article
Google Scholar
Jin YS, Laplaza JM, Jeffries TW: Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl Environ Microbiol. 2004, 70 (11): 6816-6825. 10.1128/AEM.70.11.6816-6825.2004.
Article
CAS
Google Scholar
Wahlbom CF, Otero RRC, van Zyl WH, Hahn-Hägerdal B, Jönsson LJ: Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl Environ Microbiol. 2003, 69 (2): 740-746. 10.1128/AEM.69.2.740-746.2003.
Article
CAS
Google Scholar
Bergdahl B, Heer D, Sauer U, Hahn-Hägerdal B, van Niel EW: Dynamic metabolomics differentiates between carbon and energy starvation in recombinant Saccharomyces cerevisiae fermenting xylose. Biotechnol Biofuels. 2012, 5 (1): 34-10.1186/1754-6834-5-34.
Article
CAS
Google Scholar
Mumberg D, Muller R, Funk M: Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene. 1995, 156 (1): 119-122. 10.1016/0378-1119(95)00037-7.
Article
CAS
Google Scholar
Gietz RD, Sugino A: New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 1988, 74 (2): 527-534. 10.1016/0378-1119(88)90185-0.
Article
CAS
Google Scholar
Runquist D, Fonseca C, Rådstrom P, Spencer-Martins I, Hahn-Hägerdal B: Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2009, 82 (1): 123-130. 10.1007/s00253-008-1773-y.
Article
CAS
Google Scholar
Runquist D, Hahn-Hägerdal B, Bettiga M: Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase. Appl Environ Microbiol. 2010, 76 (23): 7796-7802. 10.1128/AEM.01505-10.
Article
CAS
Google Scholar
Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF: Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast. 2005, 22: 359-368. 10.1002/yea.1216.
Article
CAS
Google Scholar
Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: A laboratory manual. 1989, Cold Spring Harbor Laboratory Press: Cold Spring Harbor
Google Scholar
Gietz RD, Schiestl RH: High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007, 2 (1): 31-34. 10.1038/nprot.2007.13.
Article
CAS
Google Scholar
Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO: Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell. 2000, 11 (12): 4241-4257. 10.1091/mbc.11.12.4241.
Article
CAS
Google Scholar
Roberts GG, Hudson AP: Transcriptome profiling of Saccharomyces cerevisiae during a transition from fermentative to glycerol-based respiratory growth reveals extensive metabolic and structural remodeling. Mol Genet Genomics. 2006, 276 (2): 170-186. 10.1007/s00438-006-0133-9.
Article
CAS
Google Scholar
Rønnow B, Kielland-Brandt MC: GUT2, a gene for mitochondrial glycerol 3-phosphate dehydrogenase of Saccharomyces cerevisiae. Yeast. 1993, 9 (10): 1121-1130. 10.1002/yea.320091013.
Article
Google Scholar
Grauslund M, Rønnow B: Carbon source-dependent transcriptional regulation of the mitochondrial glycerol-3-phosphate dehydrogenase gene, GUT2, from Saccharomyces cerevisiae. Can J Microbiol. 2000, 46 (12): 1096-1100. 10.1139/w00-105.
Article
CAS
Google Scholar
Fleck CB, Brock M: Re-characterisation of Saccharomyces cerevisiae Ach1p: fungal CoA-transferases are involved in acetic acid detoxification. Fungal Genet Biol. 2009, 46 (6–7): 473-485.
Article
CAS
Google Scholar
Hahn-Hägerdal B, Hallborn J, Jeppsson H, Meinander N, Walfridsson M, Ojamo H, Penttilä M, Zimmermann FK: Redox balances in recombinant Saccharomyces cerevisiae. Ann N Y Acad Sci, vol. 782. Edited by: Asenjo JA, Andrews BA, Asenjo JA, Andrews BA. 1996, New York: New York Acad Sciences, 286-296.
Google Scholar
Wahlbom CF, Hahn-Hägerdal B: Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng. 2002, 78 (2): 172-178. 10.1002/bit.10188.
Article
CAS
Google Scholar
Sonderegger M, Jeppsson M, Hahn-Hägerdal B, Sauer U: Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and Metabolic Flux Analysis. Appl Environ Microbiol. 2004, 70 (4): 2307-2317. 10.1128/AEM.70.4.2307-2317.2004.
Article
CAS
Google Scholar
Salusjärvi L, Kaunisto S, Holmström S, Vehkomäki M-L, Koivuranta K, Pitkänen J-P, Ruohonen L: Overexpression of NADH-dependent fumarate reductase improves D-xylose fermentation in recombinant Saccharomyces cerevisiae. J Ind Microbiol Biotechnol. 2013, 40: 1383-1392. 10.1007/s10295-013-1344-9.
Article
Google Scholar
Bradley PH, Brauer MJ, Rabinowitz JD, Troyanskaya OG: Coordinated concentration changes of transcripts and metabolites in Saccharomyces cerevisiae. PLoS Comput Biol. 2009, 5 (1): e1000270-10.1371/journal.pcbi.1000270.
Article
Google Scholar
Abdulrehman D, Monteiro PT, Teixeira MC, Mira NP, Lourenço AB, dos Santos SC, Cabrito TR, Francisco AP, Madeira SC, Aires RS, Oliveira AL, Sá-Correia I, Freitas AT: YEASTRACT: providing a programmatic access to curated transcriptional regulatory associations in Saccharomyces cerevisiae through a web services interface. Nucleic Acids Res. 2011, 39 (suppl 1): D136-D140.
Article
CAS
Google Scholar
Herrero E, Ros J, Bellí G, Cabiscol E: Redox control and oxidative stress in yeast cells. BBA General Subjects. 2008, 1780 (11): 1217-1235. 10.1016/j.bbagen.2007.12.004.
Article
CAS
Google Scholar
Gross E, Sevier CS, Heldman N, Vitu E, Bentzur M, Kaiser CA, Thorpe C, Fass D: Generating disulfides enzymatically: Reaction products and electron acceptors of the endoplasmic reticulum thiol oxidase Ero1p. Proc Natl Acad Sci U S A. 2006, 103 (2): 299-304. 10.1073/pnas.0506448103.
Article
CAS
Google Scholar
Tzagoloff A, Jang J, Glerum DM, Wu M: FLX1 codes for a carrier protein involved in maintaining a proper balance of flavin nucleotides in yeast mitochondria. J Biol Chem. 1996, 271 (13): 7392-7397. 10.1074/jbc.271.13.7392.
Article
CAS
Google Scholar
Protchenko O, Rodriguez-Suarez R, Androphy R, Bussey H, Philpott CC: A screen for genes of heme uptake identifies the FLC family required for import of FAD into the endoplasmic reticulum. J Biol Chem. 2006, 281 (30): 21445-21457. 10.1074/jbc.M512812200.
Article
CAS
Google Scholar
Farquhar R, Honey N, Murant SJ, Bossier P, Schultz L, Montgomery D, Ellis RW, Freedman RB, Tuite MF: Protein disulfide isomerase is essential for viability in Saccharomyces cerevisiae. Gene. 1991, 108 (1): 81-89. 10.1016/0378-1119(91)90490-3.
Article
CAS
Google Scholar
Karhumaa K, Påhlman A-K, Hahn-Hägerdal B, Levander F, Gorwa-Grauslund M-F: Proteome analysis of the xylose-fermenting mutant yeast strain TMB3400. Yeast. 2009, 26 (7): 371-382. 10.1002/yea.1673.
Article
CAS
Google Scholar
Kim S, Sideris DP, Sevier CS, Kaiser CA: Balanced Ero1 activation and inactivation establishes ER redox homeostasis. J Cell Biol. 2012, 196 (6): 713-725. 10.1083/jcb.201110090.
Article
CAS
Google Scholar
Laboissiere MCA, Sturley SL, Raines RT: The essential function of protein-disulfide isomerase is to unscramble nonnative disulfide bonds. J Biol Chem. 1995, 270 (47): 28006-28009. 10.1074/jbc.270.47.28006.
Article
CAS
Google Scholar
Gauss R, Kanehara K, Carvalho P, Ng DTW, Aebi M: A complex of Pdi1p and the mannosidase Htm1p initiates clearance of unfolded glycoproteins from the endoplasmic reticulum. Mol Cell. 2011, 42 (6): 782-793. 10.1016/j.molcel.2011.04.027.
Article
CAS
Google Scholar