Sharma AK, Sharma MK: Plants as bioreactors: Recent developments and emerging opportunities. Biotechnol Adv. 2009, 27: 811-832. 10.1016/j.biotechadv.2009.06.004.
Article
CAS
Google Scholar
Jin C, Altmann F, Strasser R, Mach L, Schaehs M, Kunert R, Rademancher T, Gloessl J, Steinkellner H: A plant-derived human monoclonal antibody induces an anti-carbohydrate immune response in rabbits. Glycobiology. 2008, 18: 235-241. 10.1093/glycob/cwm137.
Article
CAS
Google Scholar
Bardor M, Faveeuw C, Fitchette AC, Gilbert D, Galas L, Trottein F, Faye L, Lerouge P: Immunoreactivity in mammals of two typical plant glycol-epitopes, core alpha(1,3)-fucose and core xylose. Glycobiology. 2003, 13: 427-434. 10.1093/glycob/cwg024.
Article
CAS
Google Scholar
Fujiyama K, Misaki R, Sakai Y, Omasa T, Seki T: Change in glycosylation pattern with extension of endoplasmic reticulum retention signal sequence of mouse antibody produced by suspension-cultured tobacco BY2 cells. J Biosci Bioeng. 2009, 107: 165-172. 10.1016/j.jbiosc.2008.09.016.
Article
CAS
Google Scholar
Strasser R, Altmann F, Mach L, Glössl J, Steinkellner H: Generation of Arabidopsis thaliana plants with complex N glycans lacking beta 1,2-linked xylose and core alpha 1,3-linked fucose. FEBS Lett. 2004, 561: 132-136. 10.1016/S0014-5793(04)00150-4.
Article
CAS
Google Scholar
Bakker H, Bardor M, Molthoff JW, Gomord V, Elbers I, Stevens LH, Jordi W, Lommen A, Faye L, Lerouge P, Bosch D: Galactose-extended glycans of antibodies produced by transgenic plants. Proc Natl Acad Sci USA. 2001, 98: 2899-2904. 10.1073/pnas.031419998.
Article
CAS
Google Scholar
Kieliszewski MJ, Lamport DT: Extensin: repetitive motifs, functional sites, post-translational codes, and phylogeny. Plant J. 1994, 5: 157-172. 10.1046/j.1365-313X.1994.05020157.x.
Article
CAS
Google Scholar
Tan L, Leykam JF, Kieliszewski MJ: Glycosylation motifs that direct arabinogalactan addition to arabinogalactan proteins. Plant Physiol. 2003, 132: 1362-1369. 10.1104/pp.103.021766.
Article
CAS
Google Scholar
Shimizu M, Igasaki T, Yamada M, Yuasa K, Hasegawa J, Kato T, Tsukagoshi M, Nakamura K, Fukuda H, Matsuoka K: Experimental determination of proline hydroxylation and hydroxyproline arabinogalactosylation motifs in secretory proteins. The Plant J. 2005, 42: 877-889. 10.1111/j.1365-313X.2005.02419.x.
Article
CAS
Google Scholar
Allen AK, Desai NN, Neuberger A, Creeth JM: Properties of potato lectin and the nature of its glycoprotein linkages. Biochem J. 1978, 171: 665-674.
Article
CAS
Google Scholar
Ashford D, Desai NN, Allen AK, Neuberger A, O'Neil MA, Selvendran RR: Structural studies of the carbohydrate moieties of lectins from potato (Solanum tuberosum) tubers and thorn-apple (Datura stramonium) seeds. Biochem J. 1982, 201: 199-208.
Article
CAS
Google Scholar
Haltiwanger RS, Lowe JB: Role of glycosylation in development. Annu Rev Biochem. 2004, 73: 491-537. 10.1146/annurev.biochem.73.011303.074043.
Article
CAS
Google Scholar
Wopereis S, Lefeber DJ, Morava E, Wevers RA: Mechanisms in protein O-glycan biosynthesis and clinical and molecular aspects of protein O-glycan biosynthesis: a review. Clin Chem. 2006, 52: 574-600. 10.1373/clinchem.2005.063040.
Article
CAS
Google Scholar
Roettger S, White J, Wandall H, Olivo J-C, Stark A, Bennett E, Whitehouse C, Berger E, Clausen H, Nilsson T: Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus. J Cell Sci. 1998, 111: 45-60.
Google Scholar
Ten Hagen KG, Fritz TA, Tabak LA: All in the family: the UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferases. Glycobiology. 2003, 13: 1R-16R. 10.1093/glycob/cwg007.
Article
CAS
Google Scholar
Kingsley PD, Hagen KG, Maltby KM, Zara J, Tabak LA: Diverse spatial expression patterns of UDP-GalNAc:polypeptide N-acetylgalactosaminyl-transferase family member mRNAs during mouse development. Glycobiology. 2000, 10: 1317-1323. 10.1093/glycob/10.12.1317.
Article
CAS
Google Scholar
Ten Hagen KG, Bedi GS, Tetaert D, Kingsley PD, Hagen FK, Balys MM, Beres TM, Degand P, Tabak LA: Cloning and characterization of a ninth member of the UDP-GalNAc:polypeptide N-acetylgalactosaminyl-transferase family, ppGaNTase-T9. J Biol Chem. 2001, 276: 17395-17404. 10.1074/jbc.M009638200.
Article
CAS
Google Scholar
Elhammer AP, Kezdy FJ, Kurosaka A: The acceptor specificity of UDP-GalNAc-polypeptide N-acetulgalactosaminyltransferases. Glycoconj J. 1999, 16: 171-180. 10.1023/A:1026465232149.
Article
CAS
Google Scholar
Wang H, Tachibana K, Zhang Y, Iwasaki H, Kameyama A, Cheng L, Guo J, Hiruma T, Togayachi A, Kudo T, Kikuchi N, Narimatsu H: Cloning and characterization of a novel UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, pp-GalNAc-T14. Biochem Biophys Res Commun. 2003, 300: 738-744. 10.1016/S0006-291X(02)02908-X.
Article
CAS
Google Scholar
Zhang Y, Iwasaki H, Wang H, Kudo T, Kalka TB, Hennet T, Kubota T, Cheng L, Inaba N, Gotoh M, Togayachi A, Guo J, Hisatomi H, Nakajima K, Nishihara S, Nakamura M, Marth JD, Narimatsu H: Cloning and characterization of a new human UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase, designated pp-GalNAc-T13, that is specifically expressed in neurons and synthesizes GalNAc alpha-serine/threonine antigen. J Biol Chem. 2003, 278: 573-584. 10.1074/jbc.M203094200.
Article
CAS
Google Scholar
Cheng L, Tachibana K, Iwasaki H, Kameyama A, Zhang Y, Kubota T, Hiruma T, Tachibana K, Kudo T, Gua JM, Narimatsu H: Characterization of a novel human UDP-GalNAc transferase, pp-GalNAc-T15. FEBS Lett. 2004, 566: 17-24. 10.1016/j.febslet.2004.03.108.
Article
CAS
Google Scholar
Kishimoto T, Watanabe M, Mitsui T, Hori H: Glutelin basic subunits have a mammalian mucin-type O-linked disaccharide side chain. Arch Biochem Biophys. 1999, 370: 271-277. 10.1006/abbi.1999.1406.
Article
CAS
Google Scholar
Karnoup AS, Turkelson V, Kerr Anderson WH: O-linked glycosylation in maize-expressed human IgA1. Glycobiology. 2005, 15: 965-981. 10.1093/glycob/cwi077.
Article
CAS
Google Scholar
Yamamoto N: Structural definition of a potent macrophage activating factor derived from vitamin D3-binding protein with adjuvant activity for antibody production. Mol Immunol. 1996, 33: 1157-1164. 10.1016/S0161-5890(96)00081-8.
Article
CAS
Google Scholar
Tang CK, Apostolopoulos V: Strategies used for MUC1 immunotherapy: preclinical studies. Expert Rev Vaccines. 2008, 7: 951-962. 10.1586/14760584.7.7.951.
Article
CAS
Google Scholar
Marillonnet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y: Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotechnol. 2005, 23: 718-723. 10.1038/nbt1094.
Article
CAS
Google Scholar
Tse YC, Lo SW, Hillmer S, Dupree P, Jiang L: Dynamic response of prevacuolar compartments to brefeldin a in plant cells. Plant Physiol. 2006, 142: 1442-1459. 10.1104/pp.106.090423.
Article
CAS
Google Scholar
Ritzenthaler C, Nebenführ A, Movafeghi A, Stussi-Garaud C, Behnia L, Pimpl P, Staehelin LA, Robinson DG: Reevaluation of the effects of Brefeldin A in plant cells using tobacco Bright Yellow 2 cells expressing Golgi-targeted green fluorescent protein and COPI antisera. Plant Cell. 2002, 14: 237-261. 10.1105/tpc.010237.
Article
CAS
Google Scholar
Gerken TA, Raman J, Fritz TA, Jamison O: Identification of common and unique peptide substrate preferences for the UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferases T1 and T2 derived from oriented random peptide substrates. J Biol Chem. 2006, 281: 32403-32416. 10.1074/jbc.M605149200.
Article
CAS
Google Scholar
Alving K, Koerner R, Paulsen H, Peter-Katalinic J: Nanospray-ESI low-energy CID and MALDI post-source decay for determination of o-glycosylation sites in MUC 4 peptides. J Mass Spectrometry. 1998, 33: 1124-1133. 10.1002/(SICI)1096-9888(1998110)33:11<1124::AID-JMS734>3.0.CO;2-H.
Article
CAS
Google Scholar
Nakazaki T, Tsukiyama T, Okumoto Y, Kageyama D, Naito K, Inouye K, Tanisaka T: Distribution, structure, organ-specific expression, and phylogenic analysis of the pathogenesis-related protein-3 chitinase gene family in rice (Oryza sativa L.). Genome. 2006, 49: 619-630. 10.1139/G06-020.
Article
CAS
Google Scholar
Hanisch FG, Müller S: MUC1: the polymorphic appearance of a human mucin. Glycobiology. 2000, 10: 439-449. 10.1093/glycob/10.5.439.
Article
CAS
Google Scholar
Taylor-Papadimitriou J, Burchell J, Miles DW, Dalziel M: MUC1 and cancer. Biochim Biophys Acta. 1999, 1455: 301-313.
Article
CAS
Google Scholar
von Mensdorff-Pouilly S, Petrakou E, Kenemans P, van Uffelen K, Verstraeten AA, Snijdewint FG, van Kamp GJ, Schol DJ, Reis CA, Price MR, Livingston PO, Hilgers J: Reactivity of natural and induced human antibodies to MUC1 mucin with MUC1 peptides and n-acetygalactosamine (GalNAc) peptides. Int J Cancer. 2000, 86: 702-712. 10.1002/(SICI)1097-0215(20000601)86:5<702::AID-IJC16>3.0.CO;2-1.
Article
CAS
Google Scholar
Sorensen AL, Reis CA, Tarp MA, Mandel U, Ramachandran K, Sankaranarayanan V, Schwientek T, Graham R, taylor-Papadimitrou J, Hollingsworth MA, Burchell J, Clausen H: Chemoenzymatically synthesized multimeric Tn/STn glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance. Glycobiology. 2006, 16: 96-107. 10.1093/glycob/cwj044.
Article
CAS
Google Scholar
Wandall HH, Hassan H, Mirogorodskaja E, Kristensen AK, Roepstorff P, Bennett EP, Nielsen PA, Hollingsworth MA, Burchell J, Taylor-Papadimitrioou J, Clausen H: Substrate specificities of three members of the human UDP-N-acetyl- α-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1, -T2, and -T3. J Biol Chem. 1997, 272: 23503-25514. 10.1074/jbc.272.38.23503.
Article
CAS
Google Scholar
Geada D, Valdés R, Escobar A, Ares DM, Torres E, Blanco R, Ferro W, Dorta D, González M, Alemán MR, Padilla S, Gómez L, Del Castillo N, Mendoza O, Urquiza D, Soria Y, Brito J, Leyva A, Borroto C, Gavilondo JV: Detection of Rubisco and mycotoxins as potential contaminants of a plantibody against the hepatitis B surface antigen produced in tobacco. Biologicals. 2007, 35: 309-315. 10.1016/j.biologicals.2007.02.007.
Article
CAS
Google Scholar
Caffaro CE, Hirschberg CB, Berninsone PM: Independent and simultaneous translocation of two substrates by a nucleotide sugar transporter. Proc Natl Acad Sci USA. 2006, 103: 16176-16181. 10.1073/pnas.0608159103.
Article
CAS
Google Scholar
White T, Bennett EP, Takio K, Soerensen T, Bonding N, Clausen H: Purification and cDNA cloning of a human UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase. J Biol Chem. 1995, 270: 24156-24165. 10.1074/jbc.270.41.24156.
Article
CAS
Google Scholar
Wee E, Sherrier D, Prime T, Dupree P: Targeting of active sialyltransferase to the plant Golgi apparatus. Plant Cell. 1998, 10: 1759-1768. 10.1105/tpc.10.10.1759.
Article
CAS
Google Scholar
Birken S, Yershova O, Myers RV, Bernard MP, Moyle W: Analysis of human choriogonadotropin core 2 O-glycan isoforms. Mol Cell Endocrinol. 2003, 204: 21-30. 10.1016/S0303-7207(03)00153-9.
Article
CAS
Google Scholar
Valmu L, Alfthan H, Hotakainen K, Birken S, Stenman U-H: Site-specific glycan analysis of human chorionic gonadotropin β-subunit from malignancies and pregnancy by liquid chromatography-electrospray mass spectrometry. Glycobiology. 2006, 16: 1207-1218. 10.1093/glycob/cwl034.
Article
CAS
Google Scholar
Sugahara T, Pixley MR, Fares F, Boime I: Characterization of the O-glycosylation sites in the chorionic gonadotropin β subunit in vivo using site-directed mutagenesis and gene transfer. J Biol Chem. 1996, 271: 20797-20804. 10.1074/jbc.271.34.20797.
Article
CAS
Google Scholar
Norambuena L, Marchant L, Berninsone P, Hirschberg CB, Silva H, Orellana A: Transport of UDP-galactose in plants. Identification and functional characterization of AtUTr1, an Arabidopsis thaliana UDP-galactose/UDP-glucose transporter. J Biol Chem. 2002, 277: 32923-32929. 10.1074/jbc.M204081200.
Article
CAS
Google Scholar
Bakker H, Routier F, Oelmann S, Jordi W, Lommen A, Gerardy-Schahn R, Bosch D: Molecular cloning of two Arabidopsis UDP-galactose transporters by complementation of a deficient Chinese hamster ovary cell line. Glycobiology. 2005, 15: 193-201. 10.1093/glycob/cwh159.
Article
CAS
Google Scholar
Norambuena L, Nilo R, Handford M, Reyes F, Marchant L, Meisel L, Orellana A: AtUTr2 is an Arabidopsis thaliana nucleotide sugar transporter located in the Golgi apparatus capable of transporting UDP-galactose. Planta. 2005, 222: 521-529. 10.1007/s00425-005-1557-x.
Article
CAS
Google Scholar
Segawa H, Kawakita M, Ishida N: Human and Drosophila UDP-galactose transporters transport UDP-N-acetylgalactosamine in addition to UDP-galactose. Eur J Biochem. 2002, 269: 128-138. 10.1046/j.0014-2956.2001.02632.x.
Article
CAS
Google Scholar
Karimi M, Inze D, Depicker A: Gateway vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 2002, 7: 193-195. 10.1016/S1360-1385(02)02251-3.
Article
CAS
Google Scholar
Horsch RB, Fry JE, Hoffmann NL, Wallroth M, Eicholtz D, Rogers SG, Fraley RT: A simple and general method for transferring genes into plants. Science. 1985, 227: 1229-1231. 10.1126/science.227.4691.1229.
Article
CAS
Google Scholar
Murashige T, Skoog F: A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962, 15: 473-497. 10.1111/j.1399-3054.1962.tb08052.x.
Article
CAS
Google Scholar
Brooks SA, Carter TM, Bennett EP, Clausen H, Mandel U: Immunolocalisation of members of the polypeptide N-acetylgalactosaminyl transferase (ppGalNAc-T) family is consistent with biologically relevant altered cell surface glycosylation in breast cancer. Acta Histochem. 2007, 109: 273-284. 10.1016/j.acthis.2007.02.009.
Article
CAS
Google Scholar
Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem. 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3.
Article
CAS
Google Scholar
Shevchenko A, Wilm M, Vorm O, Mann M: Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem. 1996, 68: 850-858. 10.1021/ac950914h.
Article
CAS
Google Scholar
Andon NL, Hollingworth S, Koller A, Greenland AJ, Yates JR, Hanes PA: Proteomic characterization of wheat amyloplasts using identification of proteins by tandem mass spectrometry. Proteomics. 2002, 2: 1156-1168. 10.1002/1615-9861(200209)2:9<1156::AID-PROT1156>3.0.CO;2-4.
Article
CAS
Google Scholar
Eng JK, McCormack AL, Yates JR: An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom. 1994, 5: 976-989. 10.1016/1044-0305(94)80016-2.
Article
CAS
Google Scholar
Cooper B, Eckert D, Andon NL, Yates JR, Hanes PA: Investigative proteomics: Identification of an unknown plant virus from infected plants using mass spectrometry. J Am Soc Mass Spectrom. 2003, 12: 736-741. 10.1016/S1044-0305(03)00125-9.
Article
Google Scholar
Qian W-J, Liu T, Monroe ME, Strittmatter EF, Jacobs JM, Kangas LJ, Petritis K, Camp DGC, Smith RD: Probability-based evaluation of peptide and protein identifications from tandem mass spectrometry and SEQUEST analysis: the human proteome. J Proteome Res. 2005, 4: 53-62. 10.1021/pr0498638.
Article
CAS
Google Scholar
Craig R, Beavis RC: TANDEM: matching proteins with tandem mass spectra. Bioinformatics. 2004, 20: 1466-1467. 10.1093/bioinformatics/bth092.
Article
CAS
Google Scholar
Keller A, Nesvizhskii AI, Kolker E, Aebersold R: Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem. 2002, 74: 5383-5392. 10.1021/ac025747h.
Article
CAS
Google Scholar
Nesvizhskii AI, Keller A, Kolker E, Aebersold R: A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem. 2003, 75: 4646-4658. 10.1021/ac0341261.
Article
CAS
Google Scholar