International Energy Agency. Energy technology perspectives 2017. https://www.iea.org/reports/energy-technology-perspectives-2017 Accessed 28 Apr 2022.
Field JL, Richard TL, Smithwick EAH, Cai H, Laser MS, LeBauer DS, Long SP, Paustian K, Qin Z, Sheehan JJ, Smith P, Wang MQ, Lynd LR. Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels. Proc Natl Acad Sci. 2020;117:21968–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar D, Long SP, Arora A, Singh V. Techno-economic feasibility analysis of engineered energycane-based biorefinery co-producing biodiesel and ethanol. GCB Bioenergy. 2021;13:1498–514.
Article
CAS
Google Scholar
Durrett TP, Benning C, Ohlrogge J. Plant triacylglycerols as feedstocks for the production of biofuels. Plant J. 2008;54:593–607.
Article
CAS
PubMed
Google Scholar
Susmozas A, Martín-Sampedro R, Ibarra D, Eugenio ME, Iglesias R, Manzanares P, Moreno AD. Process strategies for the transition of 1G to advanced bioethanol production. Processes. 2020;8:1310.
Article
CAS
Google Scholar
Thelen JJ, Ohlrogge JB. Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng. 2002;4:12–21.
Article
CAS
PubMed
Google Scholar
Gurr MI. The biosynthesis of triacylglycerols. In: Stumpf PK, editor. Lipids: structure and function. Amsterdam: Elsevier; 1980. p. 205–48.
Chapter
Google Scholar
Ohlrogge J, Chapman K. The seeds of green energy: expanding the contribution of plant oils as biofuels. Biochemist. 2011;33:34–8.
Article
Google Scholar
Vanhercke T, Dyer JM, Mullen RT, Kilaru A, Rahman MM, Petrie JR, Green AG, Yurchenko O, Singh SP. Metabolic engineering for enhanced oil in biomass. Prog Lipid Res. 2019;74:103–29.
Article
CAS
PubMed
Google Scholar
Zale J, Jung JH, Kim JY, Pathak B, Karan R, Liu H, Chen X, Wu H, Candreva J, Zhai Z, Shanklin J, Altpeter F. Metabolic engineering of sugarcane to accumulate energy-dense triacylglycerols in vegetative biomass. Plant Biotechnol J. 2016;14:661–9.
Article
CAS
PubMed
Google Scholar
Sanjaya, Miller R, Durrett TP, Kosma DK, Lydic TA, Muthan B, Koo AJK, Bukhman YV, Reid GE, Howe GA, Ohlrogge J, Benning C. Altered lipid composition and enhanced nutritional value of Arabidopsis leaves following introduction of an algal diacylglycerol acyltransferase 2. Plant Cell. 2013;25:677–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan J, Zhai Z, Yan C, Xu C. Arabidopsis TRIGALACTOSYLDIACYLGLYCEROL5 interacts with TGD1, TGD2, and TGD4 to facilitate lipid transfer from the endoplasmic reticulum to plastids. Plant Cell. 2015;27:2941–55.
CAS
PubMed
PubMed Central
Google Scholar
Roston RL, Gao J, Murcha MW, Whelan J, Benning C. TGD1, -2, and -3 proteins involved in lipid trafficking form ATP-binding cassette (ABC) transporter with multiple substrate-binding proteins. J Biol Chem. 2012;287:21406–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu C, Fan J, Froehlich JE, Awai K, Benning C. Mutation of the TGD1 chloroplast envelope protein affects phosphatidate metabolism in Arabidopsis. Plant Cell. 2005;17:3094–110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lehner R, Kuksis A. Biosynthesis of triacylglycerols. Prog Lipid Res. 1996;35:169–201.
Article
CAS
PubMed
Google Scholar
Capuano F, Beaudoin F, Napier JA, Shewry PR. Properties and exploitation of oleosins. Biotechnol Adv. 2007;25:203–6.
Article
CAS
PubMed
Google Scholar
Parthibane V, Rajakumari S, Venkateshwari V, Iyappan R, Rajasekharan R. Oleosin is bifunctional enzyme that has both monoacylglycerol acyltransferase and phospholipase activities. J Biol Chem. 2012;287:1946–54.
Article
CAS
PubMed
Google Scholar
Winichayakul S, Scott RW, Roldan M, Hatier J-HB, Livingston S, Cookson R, Curran AC, Roberts NJ. In vivo packaging of triacylglycerols enhances Arabidopsis leaf biomass and energy density. Plant Physiol. 2013;162:626–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eastmond PJ. SUGAR-DEPENDENT1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds. Plant Cell. 2006;18:665–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan J, Yan C, Roston R, Shanklin J, Xu C. Arabidopsis lipins, PDAT1 acyltransferase, and SDP1 triacylglycerol lipase synergistically direct fatty acids toward β-oxidation, thereby maintaining membrane lipid homeostasis. Plant Cell. 2014;26:4119–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelly AA, van Erp H, Quettier A-L, Shaw E, Menard G, Kurup S, Eastmond PJ. The sugar-dependent1 lipase limits triacylglycerol accumulation in vegetative tissues of Arabidopsis. Plant Physiol. 2013;162:1282–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slocombe SP, Cornah J, Pinfield-Wells H, Soady K, Zhang Q, Gilday A, Dyer JM, Graham IA. Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways. Plant Biotechnol J. 2009;7:694–703.
Article
CAS
PubMed
Google Scholar
Vanhercke T, El Tahchy A, Liu Q, Zhou XR, Shrestha P, Divi UK, Ral JP, Mansour MP, Nichols PD, James CN, Horn PJ, Chapman KD, Beaudoin F, Ruiz-López N, Larkin PJ, de Feyter RC, Singh SP, Petrie JR. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves. Plant Biotechnol J. 2014;12:231–9.
Article
CAS
PubMed
Google Scholar
Fan J, Yan C, Zhang X, Xu C. Dual role for phospholipid: diacylglycerol acyltransferase: enhancing fatty acid synthesis and diverting fatty acids from membrane lipids to triacylglycerol in Arabidopsis leaves. Plant Cell. 2013;25:3506–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vanhercke T, El Tahchy A, Shrestha P, Zhou X-R, Singh SP, Petrie JR. Synergistic effect of WRI1 and DGAT1 coexpression on triacylglycerol biosynthesis in plants. Febs Lett. 2013;587:364–9.
Article
CAS
PubMed
Google Scholar
Vanhercke T, Petrie JR, Singh SP. Energy densification in vegetative biomass through metabolic engineering. Biocatal Agric Biotechnol. 2014;3:75–80.
Article
Google Scholar
Yang Y, Munz J, Cass C, Zienkiewicz A, Kong Q, Ma W, Sanjaya, Sedbrook J, Benning C. Ectopic expression of WRINKLED1 affects fatty acid homeostasis in Brachypodium distachyon vegetative tissues. Plant Physiol. 2015;169:1836–47.
CAS
PubMed
PubMed Central
Google Scholar
Parajuli S, Kannan B, Karan R, Sanahuja G, Liu H, Garcia-Ruiz E, Kumar D, Singh V, Zhao H, Long S, Shanklin J, Altpeter F. Towards oilcane: engineering hyperaccumulation of triacylglycerol into sugarcane stems. GCB Bioenergy. 2020;12:476–90.
Article
CAS
Google Scholar
Alameldin H, Izadi-Darbandi A, Smith SA, Balan V, Jones AD, Sticklen M. Production of seed-like storage lipids and increase in oil bodies in corn (maize; Zea mays L.) vegetative biomass. Ind Crops Prod. 2017;108:526–34.
Article
CAS
Google Scholar
Vanhercke T, Belide S, Taylor MC, El Tahchy A, Okada S, Rolland V, Liu Q, Mitchell M, Shrestha P, Venables I, Ma L, Blundell C, Mathew A, Ziolkowski L, Niesner N, Hussain D, Dong B, Liu G, Godwin ID, Lee J, Rug M, Zhou XR, Singh SP, Petrie JR. Up-regulation of lipid biosynthesis increases the oil content in leaves of Sorghum bicolor. Plant Biotechnol J. 2019;17:220–32.
Article
CAS
PubMed
Google Scholar
Beechey-Gradwell Z, Cooney L, Winichayakul S, Andrews M, Hea SY, Crowther T, Roberts N. Storing carbon in leaf lipid sinks enhances perennial ryegrass carbon capture especially under high N and elevated CO2. J Exp Bot. 2020;71:2351–61.
Article
CAS
PubMed
Google Scholar
Matsuoka S, Kennedy AJ, Santos EGD, Tomazela AL, Rubio LCS. Energy cane: Its concept, development, characteristics, and prospects. Adv Bot. 2014;2014:1–13.
Article
Google Scholar
Alexander AG. The energy cane alternative. Amsterdam: Elsevier; 1985.
Google Scholar
Carvalho-Netto OV, Bressiani JA, Soriano HL, Fiori CS, Santos JM, Barbosa GV, Xavier MA, Landell MG, Pereira GA. The potential of the energy cane as the main biomass crop for the cellulosic industry. Chem Biol Technol Agric. 2014;1:1–8.
Article
CAS
Google Scholar
Diniz AL, Ferreira SS, Ten-Caten F, Margarido GR, Dos Santos JM, Barbosa GVS, Carneiro MS, Souza GM. Genomic resources for energy cane breeding in the post genomics era. Comput Struct Biotechnol J. 2019;17:1404–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richard TL. Challenges in scaling up biofuels infrastructure. Science. 2010;329:793–6.
Article
CAS
PubMed
Google Scholar
Fouad WM, Hao W, Xiong Y, Steeves C, Sandhu SK, Altpeter F. Generation of transgenic energy cane plants with integration of minimal transgene expression cassette. Curr Pharm Biotechnol. 2015;16:407–13.
Article
CAS
PubMed
Google Scholar
Ramasamy M, Mora V, Damaj MB, Padilla CS, Ramos N, Rossi D, Solís-Gracia N, Vargas-Bautista C, Irigoyen S, DaSilva JA, Mirkov TE. A biolistic-based genetic transformation system applicable to a broad-range of sugarcane and energycane varieties. GM Crops Food. 2018;9:211–27.
Article
PubMed
PubMed Central
Google Scholar
Padilla CS, Damaj MB, Yang Z-N, Molina J, Berquist BR, White EL, Solís-Gracia N, Da Silva J, Mandadi KK. High-level production of recombinant snowdrop lectin in sugarcane and energy cane. Front Bioeng Biotechnol. 2020;8:977.
Article
PubMed
PubMed Central
Google Scholar
Eid A, Mohan C, Sanchez S, Wang D, Altpeter F. Multiallelic, targeted mutagenesis of magnesium chelatase with CRISPR/Cas9 provides a rapidly scorable phenotype in highly polyploid sugarcane. Front Genome Ed. 2021;3:654996.
Article
PubMed
PubMed Central
Google Scholar
Kannan B, Jung JH, Moxley GW, Lee SM, Altpeter F. TALEN-mediated targeted mutagenesis of more than 100 COMT copies/alleles in highly polyploid sugarcane improves saccharification efficiency without compromising biomass yield. Plant Biotechnol J. 2018;16:856–66.
Article
CAS
PubMed
Google Scholar
Oz MT, Altpeter A, Karan R, Merotto A, Altpeter F. CRISPR/Cas9-mediated multi-allelic gene targeting in sugarcane confers herbicide tolerance. Front Genome Ed. 2021;3:673566.
Article
PubMed
PubMed Central
Google Scholar
Zhao Y, Karan R, Altpeter F. Error-free recombination in sugarcane mediated by only 30 nucleotides of homology and CRISPR/Cas9 induced DNA breaks or Cre-recombinase. Biotechnol J. 2021;16:2000650.
Article
CAS
Google Scholar
Mudge SR, Basnayake SW, Moyle RL, Osabe K, Graham MW, Morgan TE, Birch RG. Mature-stem expression of a silencing-resistant sucrose isomerase gene drives isomaltulose accumulation to high levels in sugarcane. Plant Biotechnol J. 2013;11:502–9.
Article
CAS
PubMed
Google Scholar
Wang J, Li Y, Wai CM, Beuchat G, Chen L-Q. Identification and analysis of stem-specific promoters from sugarcane and energy cane for oil accumulation in their stems. GCB Bioenergy. 2021;13:1515–27.
Article
CAS
Google Scholar
Mitchell MC, Pritchard J, Okada S, Zhang J, Venables I, Vanhercke T, Ral J-P. Increasing growth and yield by altering carbon metabolism in a transgenic leaf oil crop. Plant Biotechnol J. 2020;18:2042–52.
Article
CAS
PubMed Central
Google Scholar
Tai PYP, Shine JM Jr, Glaz B, Deren CW, Miller JD, Comstock JC. Registration of ‘CP 82–1592’ Sugarcane. Crop Sci. 1991;31:1706–7.
Google Scholar
Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980;8:4321–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuijper J. De groei van bladschijf, bladscheede em stengel van het suikerriet. Arch Suikerind Ned-Indie. 1915;23:528–56.
Google Scholar
Iskandar HM, Simpson RS, Casu RE, Bonnett GD, Maclean DJ, Manners JM. Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Mol Biol Rep. 2004;22:325–37.
Article
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar