Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11(11):3887.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Schwartz J-CD, Guo X, Bhatia S, Cao E, Chen L, et al. Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity. 2004;20(3):337–47.
Article
CAS
PubMed
Google Scholar
Shi L, Chen S, Yang L, Li Y. The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. J Hematol Oncol. 2013;6(1):74.
Article
PubMed
PubMed Central
CAS
Google Scholar
Korman AJ, Peggs KS, Allison JP. Checkpoint blockade in cancer immunotherapy. Adv Immunol. 2006;90:297–339.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7–H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793–800.
Article
CAS
PubMed
Google Scholar
Latchman Y, Wood C, Chemova T, Iwai Y, Malenkovich N, Long A, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2(3):261–8.
Article
CAS
PubMed
Google Scholar
Blank C, Kuball J, Voelkl S, Wiendl H, Becker B, Walter B, et al. Blockade of PD-L1 (B7–H1) augments human tumor-specific T cell responses in vitro. Int J Cancer. 2006;119(2):317–27.
Article
CAS
PubMed
Google Scholar
Konishi J, Yamazaki K, Azuma M, Kinoshita I, Dosaka-Akita H, Nishimura M. B7–H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clin Cancer Res. 2004;10(15):5094–100.
Article
CAS
PubMed
Google Scholar
Rozali EN, Hato SV, Robinson BW, Lake RA, Lesterhuis WJ. Programmed death ligand 2 in cancer-induced immune suppression. Clin Dev Immunol. 2012;2012:1–8.
Article
CAS
Google Scholar
McDermott DF, Atkins MB. PD-1 as a potential target in cancer therapy. Cancer Med. 2013;2(5):662–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;2012(366):2443–54.
Article
CAS
Google Scholar
Wang J, Okazaki I, Yoshida T, Chikuma S, Kato Y, Nakaki F, et al. PD-1 deficiency results in the development of fatal myocarditis in MRL mice. Int Immunol. 2010;22(6):443–52.
Article
CAS
PubMed
Google Scholar
Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11(2):141–51.
Article
CAS
PubMed
Google Scholar
Hirano F, Kaneko K, Tamura H, Dong H, Wang S, Ichikawa M, et al. Blockade of B7–H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res. 2005;65(3):1089–96.
Article
CAS
PubMed
Google Scholar
Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439(7077):682–7.
Article
CAS
PubMed
Google Scholar
Wong RM, Scotland RR, Lau RL, Wang C, Korman AJ, Kast W, et al. Programmed death-1 blockade enhances expansion and functional capacity of human melanoma antigen-specific CTLs. Int Immunol. 2007;19(10):1223–34.
Article
CAS
PubMed
Google Scholar
Saito H, Kuroda H, Matsunaga T, Osaki T, Ikeguchi M. Increased PD-1 expression on CD4+ and CD8+ T cells is involved in immune evasion in gastric cancer. J Surg Oncol. 2013;107(5):517–22.
Article
CAS
PubMed
Google Scholar
Chauvin J-M, Pagliano O, Fourcade J, Sun Z, Wang H, Sander C, et al. TIGIT and PD-1 impair tumor antigen–specific CD8+ T cells in melanoma patients. J Clin Investig. 2015;125(5):2046.
Article
PubMed
PubMed Central
Google Scholar
Dong Y, Sun Q, Zhang X. PD-1 and its ligands are important immune checkpoints in cancer. Oncotarget. 2017;8(2):2171.
Article
PubMed
Google Scholar
Harvey R. Immunologic and clinical effects of targeting PD-1 in lung cancer. Clin Pharmacol Ther. 2014;96(2):214–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iwai Y, Hamanishi J, Chamoto K, Honjo T. Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci. 2017;24(1):26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol. 2009;157(2):220–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jalilzadeh-Razin S, Mantegi M, Tohidkia MR, Pazhang Y, Pourseif MM, Barar J, et al. Phage antibody library screening for the selection of novel high-affinity human single-chain variable fragment against gastrin receptor: an in silico and in vitro study. DARU J Pharm Sci. 2019;27(1):21–34.
Article
CAS
Google Scholar
Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23(9):1126–36.
Article
CAS
PubMed
Google Scholar
Chan CE, Lim AP, MacAry PA, Hanson BJ. The role of phage display in therapeutic antibody discovery. Int Immunol. 2014;26(12):649–57.
Article
CAS
PubMed
Google Scholar
Hammers CM, Stanley JR. Antibody phage display: technique and applications. J Investig Dermatol. 2014;134(2):e17.
Article
CAS
Google Scholar
Carter PJ. Potent antibody therapeutics by design. Nat Rev Immunol. 2006;6(5):343–57.
Article
CAS
PubMed
Google Scholar
Bahara NHH, Tye GJ, Choong YS, Ong EBB, Ismail A, Lim TS. Phage display antibodies for diagnostic applications. Biologicals. 2013;41(4):209–16.
Article
CAS
Google Scholar
Kalim M, Liang K, Khan MSI, Zhan J. Efficient development and expression of scFv recombinant proteins against PD-L1 surface domain and potency in cancer therapy. Cytotechnology. 2019;71(3):705–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan S, Li D, Zhu X. Cancer immunotherapy: pros, cons and beyond. Biomed Pharmacother. 2020;124:109821.
Article
PubMed
Google Scholar
Lamichhane P, Deshmukh R, Brown JA, Jakubski S, Parajuli P, Nolan T, et al. Novel delivery systems for checkpoint inhibitors. Medicines. 2019;6(3):74.
Article
CAS
PubMed Central
Google Scholar
Lu R-M, Hwang Y-C, Liu I-J, Lee C-C, Tsai H-Z, Li H-J, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020;27(1):1–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biteghe FAN, Mungra N, Chalomie NET, Ndong JC, Engohang-Ndong J, Vignaux G, et al. Advances in epidermal growth factor receptor specific immunotherapy: lessons to be learned from armed antibodies. Oncotarget. 2020;11(38):3531–57.
Article
PubMed
PubMed Central
Google Scholar
Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561.
Article
PubMed
PubMed Central
CAS
Google Scholar
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, et al. Phage display derived monoclonal antibodies: from bench to bedside. Front Immunol. 2020;11:1986.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kleinpeter P, Fend L, Thioudellet C, Geist M, Sfrontato N, Koerper V, et al. Vectorization in an oncolytic vaccinia virus of an antibody, a Fab and a scFv against programmed cell death-1 (PD-1) allows their intratumoral delivery and an improved tumor-growth inhibition. Oncoimmunology. 2016;5(10):e1220467.
Article
PubMed
PubMed Central
CAS
Google Scholar
Drees JJ, Augustin LB, Mertensotto MJ, Schottel JL, Leonard AS, Saltzman DA. Soluble production of a biologically active single-chain antibody against murine PD-L1 in Escherichia coli. Protein Expr Purif. 2014;94:60–6.
Article
CAS
PubMed
Google Scholar
Fouladi M, Sarhadi S, Tohidkia M, Fahimi F, Samadi N, Sadeghi J, et al. Selection of a fully human single domain antibody specific to Helicobacter pylori urease. Appl Microbiol Biotechnol. 2019;103(8):3407–20.
Article
CAS
PubMed
Google Scholar
Brunel S, Aubert N, Olive D, Marodon G. TNFRSF14 (HVEM) is a novel immune checkpoint blockade that can be targeted by a monoclonal antibody to improve anti-tumor response in humanized mice. bioRxiv. 2020:711119.
Aghanejad A, Bonab SF, Sepehri M, Haghighi FS, Tarighatnia A, Kreiter C, et al. A review on targeting tumor microenvironment: the main paradigm shift in the mAb-based immunotherapy of solid tumors. Int J Biol Macromol. 2022;15(207):592–610.
Article
CAS
Google Scholar
Tian T, Li Z. Targeting Tim-3 in cancer with resistance to PD-1/PD-L1 blockade. Front Oncol. 2021;11: 731175.
Article
PubMed
PubMed Central
Google Scholar
Twomey JD, Zhang B. Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. AAPS J. 2021;23(2):39.
Article
PubMed
Google Scholar
Wang C, Thudium KB, Han M, Wang X-T, Huang H, Feingersh D, et al. In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates. Cancer Immunol Res. 2014;2(9):846–56.
Article
CAS
PubMed
Google Scholar
Passaro C, Alayo Q, DeLaura I, McNulty J, Grauwet K, Ito H, et al. Arming an oncolytic herpes simplex virus type 1 with a single-chain fragment variable antibody against PD-1 for experimental glioblastoma therapy. Clin Cancer Res. 2019;25(1):290–9.
Article
CAS
PubMed
Google Scholar
Lin C, Ren W, Luo Y, Li S, Chang Y, Li L, et al. Intratumoral delivery of a PD-1-blocking scFv encoded in oncolytic HSV-1 promotes antitumor immunity and synergizes with TIGIT blockade. Cancer Immunol Res. 2020;8(5):632–47.
Article
PubMed
Google Scholar
McGowan E, Lin Q, Ma G, Yin H, Chen S, Lin Y. PD-1 disrupted CAR-T cells in the treatment of solid tumors: promises and challenges. Biomed Pharmacother. 2020;121:109625.
Article
CAS
PubMed
Google Scholar
Rafiq S, Yeku OO, Jackson HJ, Purdon TJ, van Leeuwen DG, Drakes DJ, et al. Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat Biotechnol. 2018;36(9):847–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakajima M, Sakoda Y, Adachi K, Nagano H, Tamada K. Improved survival of chimeric antigen receptor-engineered T (CAR-T) and tumor-specific T cells caused by anti-programmed cell death protein 1 single-chain variable fragment-producing CAR-T cells. Cancer Sci. 2019;110(10):3079.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan Q, Jordan R, Brlansky RH, Minenkova O, Hartung J. Development of single chain variable fragment (scFv) antibodies against surface proteins of ‘Ca. Liberibacter asiaticus.’ J Microbiol Methods. 2016;122:1–7.
Article
PubMed
CAS
Google Scholar
Sharifzadeh Z, Rahbarizadeh F, Shokrgozar MA, Ahmadvand D, Mahboudi F, Jamnani FR, et al. Development of oligoclonal nanobodies for targeting the tumor-associated glycoprotein 72 antigen. Mol Biotechnol. 2013;54(2):590–601.
Article
CAS
PubMed
Google Scholar
Bagheri S, Yousefi M, Safaie Qamsari E, Riazi-Rad F, Abolhassani M, Younesi V, et al. Selection of single chain antibody fragments binding to the extracellular domain of 4–1BB receptor by phage display technology. Tumor Biol. 2017;39(3):1010428317695924.
Article
CAS
Google Scholar
Farajpour Z, Rahbarizadeh F, Kazemi B, Ahmadvand D, Mohaghegh M. Identification and in vitro characterization of phage-displayed VHHs targeting VEGF. J Biomol Screen. 2014;19(4):547–55.
Article
CAS
PubMed
Google Scholar
Qamsari ES, Sharifzadeh Z, Bagheri S, Riazi-Rad F, Younesi V, Abolhassani M, et al. Isolation and characterization of anti c-met single chain fragment variable (scFv) antibodies. J Immunotoxicol. 2017;14(1):23–30.
Article
CAS
PubMed
Google Scholar