Carlson R. Biodesic 2011 bioeconomy update. In: BioDesic; 2011.
Google Scholar
Walsh G. Biopharmaceutical benchmarks 2014. Nat Biotechnol. 2014;32(10):992–1000.
Article
CAS
PubMed
Google Scholar
The Pharmaceutical and Biotech Industries in the United States [http://selectusa.commerce.gov/industry-snapshots/pharmaceutical-and-biotech-industries-united-states].
Walsh G. Post-translational modifications of protein biopharmaceuticals. Drug Discov Today. 2010;15(17–18):773–80.
Article
CAS
PubMed
Google Scholar
Betts Z, Dickson AJ. Assessment of UCOE on recombinant EPO production and expression stability in amplified Chinese hamster ovary cells. Mol Biotechnol. 2015;57(9):846–58.
Article
CAS
PubMed
Google Scholar
Dahodwala H, Lee KH. The fickle CHO: a review of the causes, implications, and potential alleviation of the CHO cell line instability problem. Curr Opin Biotechnol. 2019;60:128–37.
Article
CAS
PubMed
Google Scholar
Kim M, O'Callaghan PM, Droms KA, James DC. A mechanistic understanding of production instability in CHO cell lines expressing recombinant monoclonal antibodies. Biotechnol Bioeng. 2011;108(10):2434–46.
Article
CAS
PubMed
Google Scholar
Veith N, Ziehr H, MacLeod RA, Reamon-Buettner SM. Mechanisms underlying epigenetic and transcriptional heterogeneity in Chinese hamster ovary (CHO) cell lines. BMC Biotechnol. 2016;16:6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Feichtinger J, Hernandez I, Fischer C, Hanscho M, Auer N, Hackl M, Jadhav V, Baumann M, Krempl PM, Schmidl C, et al. Comprehensive genome and epigenome characterization of CHO cells in response to evolutionary pressures and over time. Biotechnol Bioeng. 2016;113(10):2241–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaas CS, Kristensen C, Betenbaugh MJ, Andersen MR. Sequencing the CHO DXB11 genome reveals regional variations in genomic stability and haploidy. BMC Genomics. 2015;16:160.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lewis NE, Liu X, Li Y, Nagarajan H, Yerganian G, O'Brien E, Bordbar A, Roth AM, Rosenbloom J, Bian C, et al. Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat Biotechnol. 2013;31(8):759–65.
Article
CAS
PubMed
Google Scholar
Arnold L, Lee K, Rucker-Pezzini J, Lee JH. Implementation of fully integrated continuous antibody processing: effects on productivity and COGm. Biotechnol J. 2019;14(2):e1800061.
Article
PubMed
CAS
Google Scholar
Bandyopadhyay AA, O’Brien SA, Zhao L, Fu H-Y, Vishwanathan N, Hu W-S. Recurring genomic structural variation leads to clonal instability and loss of productivity. Biotechnol Bioeng. 2019;116(1):41–53.
Article
CAS
PubMed
Google Scholar
Ha TK, Kim YG, Lee GM. Understanding of altered N-glycosylation-related gene expression in recombinant Chinese hamster ovary cells subjected to elevated ammonium concentration by digital mRNA counting. Biotechnol Bioeng. 2015;112(8):1583–93.
Article
CAS
PubMed
Google Scholar
Mulukutla BC, Gramer M, Hu WS. On metabolic shift to lactate consumption in fed-batch culture of mammalian cells. Metab Eng. 2012;14(2):138–49.
Article
CAS
PubMed
Google Scholar
Kim DY, Chaudhry MA, Kennard ML, Jardon MA, Braasch K, Dionne B, Butler M, Piret JM. Fed-batch CHO cell t-PA production and feed glutamine replacement to reduce ammonia production. Biotechnol Prog. 2013;29(1):165–75.
Article
CAS
PubMed
Google Scholar
Pereira AGM, Walther JL, Hollenbach M, Young JD. C-13 Flux Analysis Reveals that Rebalancing Medium Amino Acid Composition can Reduce Ammonia Production while Preserving Central Carbon Metabolism of CHO Cell Cultures. Biotechnol J. 2018;13(10):1700518.
Article
CAS
Google Scholar
Peltomaki P. Role of DNA mismatch repair defects in the pathogenesis of human cancer. J Clin Oncol. 2003;21(6):1174–9.
Article
CAS
PubMed
Google Scholar
Preston BD, Albertson TM, Herr AJ. DNA replication fidelity and cancer. Semin Cancer Biol. 2010;20(5):281–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muzny DM, Bainbridge MN, Chang K, Dinh HH, Drummond JA, Fowler G, Kovar CL, Lewis LR, Morgan MB, Newsham IF, et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.
Article
CAS
Google Scholar
Hause RJ, Pritchard CC, Shendure J, Salipante SJ. Classification and characterization of microsatellite instability across 18 cancer types. Nat Med. 2016;22(11):1342–50.
Article
CAS
PubMed
Google Scholar
Wu X, Xu Y, Chai W, Her C. Causal link between microsatellite instability and hMRE11 dysfunction in human cancers. Mol Cancer Res. 2011;9(11):1443–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vilar E, Gruber SB. Microsatellite instability in colorectal cancer-the stable evidence. Nat Rev Clin Oncol. 2010;7(3):153–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bass AJ, Thorsson V, Shmulevich I, Reynolds SM, Miller M, Bernard B, Hinoue T, Laird PW, Curtis C, Shen H, et al. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–9.
Article
CAS
Google Scholar
Cancer Genome Atlas Research N, Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73.
Article
CAS
Google Scholar
Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, Meltzer SJ, Rodriguez-Bigas MA, Fodde R, Ranzani GN, et al. A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58(22):5248–57.
CAS
PubMed
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9.
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome project data processing S. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera GA, Kling DE, Gauthier LD, Levy-Moonshine A, Roazen D, et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv. 2018:201178. [Preprints].
Cingolani P, Platts A, Wangle L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6(2):80–92.
Article
CAS
Google Scholar
Thiel T, Michalek W, Varshney RK, Graner A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet. 2003;106(3):411–22.
Article
CAS
PubMed
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei CH, Kao HY, Lu Z. PubTator: a web-based text mining tool for assisting biocuration. Nucleic Acids Res. 2013;41(Web Server issue):W518–22.
Article
PubMed
PubMed Central
Google Scholar
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu G. clusterProfiler: An universal enrichment tool for functional and comparative study. bioRxiv. 2018:256784. [Preprints].
Elliott K, Anderson J, Gavin C, Blakeman K, Harcum S, Harris G. Spent media analysis with an integrated CE-MS analyzer of Chinese hamster ovary cells grown in an ammonia-stressed parallel microbioreactor platform. BioProcess J. 2020. p. 19.
Fan Y, Del Val IJ, Muller C, Sen JW, Rasmussen SK, Kontoravdi C, Weilguny D, Andersen MR. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation. Biotechnol Bioeng. 2015;112(3):521–35.
Article
CAS
PubMed
Google Scholar
Pereira S, Kildegaard HF, Andersen MR. Impact of CHO Metabolism on Cell Growth and Protein Production: An Overview of Toxic and Inhibiting Metabolites and Nutrients. Biotechnol J. 2018;13(3):e1700499.
Article
PubMed
CAS
Google Scholar
Brodsky AN, Caldwell M, Bae S, Harcum SW. Glycosylation-related genes in NS0 cells are insensitive to moderately elevated ammonium concentrations. J Biotechnol. 2014;187:78–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen P, Harcum SW. Effects of elevated ammonium on glycosylation gene expression in CHO cells. Metab Eng. 2006;8(2):123–32.
Article
CAS
PubMed
Google Scholar
Freund NW, Croughan MS. A Simple Method to Reduce both Lactic Acid and Ammonium Production in Industrial Animal Cell Culture. Int J Mol Sci. 2018;19(2):385.
Article
PubMed Central
CAS
Google Scholar
Yang M, Butler M. Effects of Ammonia and glucosamine on the heterogeneity of erythropoietin Glycoforms. Biotechnol Prog. 2002;18(1):129–38.
Article
CAS
PubMed
Google Scholar
Genzel Y, Ritter JB, Konig S, Alt R, Reichl U. Substitution of glutamine by pyruvate to reduce ammonia formation and growth inhibition of mammalian cells. Biotechnol Prog. 2005;21(1):58–69.
Article
CAS
PubMed
Google Scholar
Macheret M, Halazonetis TD. DNA replication stress as a hallmark of cancer. Annu Rev Pathol. 2015;10:425–48.
Article
CAS
PubMed
Google Scholar
Zeman MK, Cimprich KA. Causes and consequences of replication stress. Nat Cell Biol. 2014;16(1):2–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petermann E, Orta ML, Issaeva N, Schultz N, Helleday T. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell. 2010;37(4):492–502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, Vassiliou LV, Kolettas E, Niforou K, Zoumpourlis VC, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 2006;444(7119):633–7.
Article
CAS
PubMed
Google Scholar
Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, Schurra C, Garre M, Nuciforo PG, Bensimon A, et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature. 2006;444(7119):638–42.
Article
PubMed
CAS
Google Scholar
Saitoh T, Hiraga S. Studies on Molecular Mechanism of DNA-Replication in Escherichia-Coli .3. Genetic-Analysis of Mutation Causing Resumption of DNA-Replication Sensitive to Rifampicin, Which Exists in DNA Mutant Defective in Initiation of Replication. Jpn J Genet. 1975;49(5):320.
Google Scholar
Ponder RG, Fonville NC, Rosenberg SM. A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation. Mol Cell. 2005;19(6):791–804.
Article
CAS
PubMed
Google Scholar
Motoyama N, Naka K. DNA damage tumor suppressor genes and genomic instability. Curr Opin Genet Dev. 2004;14(1):11–6.
Article
CAS
PubMed
Google Scholar
Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr Protoc Bioinformatics. 2016;54:1 30 31.
Article
Google Scholar
van Deursen JM. The role of senescent cells in ageing. Nature. 2014;509(7501):439–46.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nakanishi M, Shimada M, Niida H. Genetic instability in cancer cells by impaired cell cycle checkpoints. Cancer Sci. 2006;97(10):984–9.
Article
CAS
PubMed
Google Scholar
Houtgraaf JH, Versmissen J, van der Giessen WJ. A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovasc Revasc Med. 2006;7(3):165–72.
Article
PubMed
Google Scholar
Thompson LH, Schild D. Homologous recombinational repair of DNA ensures mammalian chromosome stability. Mutat Res. 2001;477(1–2):131–53.
Article
CAS
PubMed
Google Scholar
Rodgers K, McVey M. Error-prone repair of DNA double-Strand breaks. J Cell Physiol. 2016;231(1):15–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harfe BD, Jinks-Robertson S. DNA mismatch repair and genetic instability. Annu Rev Genet. 2000;34:359–99.
Article
CAS
PubMed
Google Scholar
Peltomaki P. DNA mismatch repair gene mutations in human cancer. Environ Health Perspect. 1997;105(Suppl 4):775–80.
CAS
PubMed
PubMed Central
Google Scholar
Buermeyer AB, Deschenes SM, Baker SM, Liskay RM. Mammalian DNA mismatch repair. Annu Rev Genet. 1999;33:533–64.
Article
CAS
PubMed
Google Scholar
Modrich P. Mechanisms and biological effects of mismatch repair. Annu Rev Genet. 1991;25:229–53.
Article
CAS
PubMed
Google Scholar
Modrich P, Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem. 1996;65:101–33.
Article
CAS
PubMed
Google Scholar
Sancar A, Hearst JE. Molecular matchmakers. Science. 1993;259(5100):1415–20.
Article
CAS
PubMed
Google Scholar