Deng X. Advances in worldwide citrus breeding. Acta Horticulturae Sinica. 2005;32(6):1140–6.
Google Scholar
Guo W, Duan Y, Olivares-Fuster O, Wu Z, Arias CR, Burns JK, Grosser JW. Protoplast transformation and regeneration of transgenic Valencia sweet orange plants containing a juice quality-related pectin methylesterase gene. Plant Cell Rep. 2005;24(8):482–6.
Article
CAS
Google Scholar
Dutt M, Grosser JW. Evaluation of parameters affecting Agrobacterium-mediated transformation of citrus. Plant Cell Tissue and Organ Culture (PCTOC). 2009;98(3):331–40.
Mondal S, Dutt M, Grosser JW, Dewdney M. Transgenic citrus expressing the antimicrobial gene Attacin E (attE) reduces the susceptibility of ‘Duncan’grapefruit to the citrus scab caused by Elsinoë fawcettii. Eur J Plant Pathol. 2012;133(2):391–404.
Poles L, Licciardello C, Distefano G, Nicolosi E, Gentile A, La Malfa S. Recent advances of in vitro culture for the application of new breeding techniques in Citrus. Plants. 2020;9(8):938.
Article
Google Scholar
Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 2013;41(20):e188.
Article
CAS
Google Scholar
Song G, Jia M, Chen K, Kong X, Khattak B, Xie C, Li A, Mao L. CRISPR/Cas9: a powerful tool for crop genome editing. Crop J. 2016;4(2):75–82.
Article
Google Scholar
Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu JK. Application of the CRISPR–Cas system for efficient genome engineering in plants. Mol Plant. 2013;6(6):2008.
Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol. 2015;87(1–2):99–110.
Article
CAS
Google Scholar
Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J. Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol. 2013;31(8):688.
Article
CAS
Google Scholar
Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31(8):691.
Article
CAS
Google Scholar
Jia H, Wang N. Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One. 2014;9(4):e93806.
Article
Google Scholar
Jia H, Orbovic V, Jones JB, Wang N. Modification of the PthA4 effector binding elements in type I Cs LOB 1 promoter using Cas9/sg RNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4: dCs LOB 1.3 infection. Plant Biotechnol J. 2016;14(5):1291–301.
Article
CAS
Google Scholar
Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L, Zou X. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene Cs LOB 1 promoter in citrus. Plant Biotechnol J. 2017;15(12):1509–19.
Article
CAS
Google Scholar
Zhang F, LeBlanc C, Irish VF, Jacob Y. Rapid and efficient CRISPR/Cas9 gene editing in Citrus using the YAO promoter. Plant Cell Rep. 2017;36(12):1883–7.
Article
CAS
Google Scholar
Wang L, Chen S, Peng A, Xie Z, He Y, Zou X. CRISPR/Cas9-mediated editing of CsWRKY22 reduces susceptibility to Xanthomonas citri subsp. citri in Wanjincheng orange (Citrus sinensis (L.) Osbeck). Plant Biotechnol Reports. 2019;13(5):501–10.
Article
CAS
Google Scholar
Moore G, Jacono C, Neidigh J, Lawrence S, Cline K. Agrobacterium-mediated transformation of citrus stem segments and regeneration of transgenic plants. Plant Cell Rep. 1992;11(5–6):238–42.
CAS
PubMed
Google Scholar
Dutt M, Grosser JW. An embryogenic suspension cell culture system for agrobacterium-mediated transformation of citrus. Plant Cell Rep. 2010;29(11):1251–60.
Fleming G, Olivares-Fuster O, Del-Bosco SF, Grosser JW. An alternative method for the genetic transformation of sweet orange. In Vitro Cell Developmental Biology-Plant. 2000;36(6):450.
Cervera M, Juarez J, Navarro A, Pina JA, Duran-Vila N, Navarro L, Pena L. Genetic transformation and regeneration of mature tissues of woody fruit plants bypassing the juvenile stage. Transgenic Res. 1998;7(1):51–9.
Article
CAS
Google Scholar
Domínguez A, Cervera M, Pérez RM, Romero J, Fagoaga C, Cubero J, López MM, Juárez JA, Navarro L, Peña L. Characterisation of regenerants obtained under selective conditions after agrobacterium-mediated transformation of citrus explants reveals production of silenced and chimeric plants at unexpected high frequencies. Mol Breed. 2004;14(2):171–83.
Article
Google Scholar
Peña L, Navarro, L. Transgenic citrus. In Transgenic trees, Vol. 44. Biotechnology in agriculture and forestry. Ed. Bajaj, Y.P.S. Berlin: Springer-Verlag; 1999. p. 39–53.
Dutt M, Erpen L, Grosser JW. Genetic transformation of the ‘W Murcott’ tangor: comparison between different techniques. Sci Hortic. 2018;242:90–4.
Article
CAS
Google Scholar
Qin G, Gu H, Ma L, Peng Y, Deng XW, Chen Z, Qu LJ. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Res. 2007;17(5):471–82.
Article
CAS
Google Scholar
Charrier A, Vergne E, Dousset NJ-P, Richer A, Petiteau A, Chevreau E. Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system. Front Plant Sci. 2019;10:40.
Article
Google Scholar
Nishitani C, Hirai N, Komori S, Wada M, Okada K, Osakabe K, Yamamoto T, Osakabe Y. Efficient genome editing in apple using a CRISPR/Cas9 system. Sci Rep. 2016;6:31481.
Article
CAS
Google Scholar
Nakajima I, Ban Y, Azuma A, Onoue N, Moriguchi T, Yamamoto T, Toki S, Endo M. CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS One. 2017;12(5):e0177966.
Article
Google Scholar
Wang Z, Wang S, Li D, Zhang Q, Li L, Zhong C, Liu Y, Huang H. Optimized paired-sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit. Plant Biotechnol J. 2018;16(8):1424–33.
Article
CAS
Google Scholar
Zhu C, Zheng X, Huang Y, Ye J, Chen P, Zhang C, Zhao F, Xie Z, Zhang S, Wang N. Genome sequencing and CRISPR/Cas9 gene editing of an early flowering mini-Citrus (Fortunella hindsii). Plant Biotechnol J. 2019;17(11):2199–210.
Article
CAS
Google Scholar
Cermak T, Curtin SJ, Gil-Humanes J, Cegan R, Kono TJY, Konecna E, Belanto JJ, Starker CG, Mathre JW, Greenstein RL, et al. A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell. 2017;29(6):1196–217.
Article
CAS
Google Scholar
Stavolone L, Kononova M, Pauli S, Ragozzino A, de Haan P, Milligan S, Lawton K, Hohn T. Cestrum yellow leaf curling virus (CmYLCV) promoter: a new strong constitutive promoter for heterologous gene expression in a wide variety of crops. Plant Mol Biol. 2003;53(5):703–13.
Article
Google Scholar
Engler C, Marillonnet S. Golden Gate cloning. Methods Mol Biol. 2014;1116:119–31.
Article
CAS
Google Scholar
Burow MD, Chlan CA, Sen P, Lisca A, Murai N. High-frequency generation of transgenic tobacco plants after modified leaf disk cocultivation withAgrobacterium tumefaciens. Plant Mol Biol Report. 1990;8(2):124–39.
Article
Google Scholar
Grosser JW. Sweet orange tree named ‘Florida EV2’. In: U.S. Patent Application 14/998,531; 2018.
Grosser JW, Gmitter FG Jr. Protoplast fusion and citrus improvement. Plant Breed Rev. 1990;8:339–74.
Google Scholar
Kaur P, Stanton D, Grosser JW, Dutt M. Yield and transformation ability of citrus protoplasts derived from either cell suspension cultures or embryogenic callus. Proc Florida State Horticultural Soc. 2018;131:65–9.
Gray DJ, Conger BV. Somatic embryo ontogeny in tissue cultures of orchardgrass. In: Henke RR, Hughes KW, Constantin MJ, Hollaender A (eds). Tissue Culture in Forestry and Agriculture. New York: Plenum Press; 1985. p. 49–57.
Toonen MA, Hendriks T, Schmidt ED, Verhoeven HA, van Kammen A, de Vries SC. Description of somatic-embryo-forming single cells in carrot suspension cultures employing video cell tracking. Planta. 1994;194(4):565–72.
Article
CAS
Google Scholar
Uniyal AP, Mansotra K, Yadav SK, Kumar V. An overview of designing and selection of sgRNAs for precise genome editing by the CRISPR-Cas9 system in plants. 3 Biotech. 2019;9(6):223.
Article
Google Scholar
Mikami M, Toki S, Endo M. Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice. Plant Mol Biol. 2015;88(6):561–72.
Article
CAS
Google Scholar
Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud J-B, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J, et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 2016;17(1):148.
Article
Google Scholar
Nissim L, Perli Samuel D, Fridkin A, Perez-Pinera P, Lu Timothy K. Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol Cell. 2014;54(4):698–710.
Article
CAS
Google Scholar
Qi L, Haurwitz RE, Shao W, Doudna JA, Arkin AP. RNA processing enables predictable programming of gene expression. Nat Biotechnol. 2012;30(10):1002.
Article
CAS
Google Scholar