Waegeman H, De Mey M. Increasing Recombinant Protein Production in E. coli by an Alternative Method to Reduce Acetate. In: Petre M (ed) Advances in applied biotechnology. 2012: 127–144.
Tseng T-T, Tyler BM, Setubal JC. Protein secretion Systems in Bacterial-Host Associations, and their description in the gene ontology. BMC Microbiol. 2009;9(S1):S2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Delic M, Göngrich R, Mattanovich D, Gasser B. Engineering of protein folding and secretion-strategies to overcome bottlenecks for efficient production of recombinant proteins. Antioxid Redox Signal. 2014;21(3):414–37.
Article
CAS
PubMed
Google Scholar
Baneyx F, Georgiou G. Construction and characterization of Escherichia coli strains deficient in multiple secreted proteases: protease III degrades high-molecular-weight substrates in vivo. J Bacteriol. 1991;173(8):2696–703.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Marco A. Protocol for preparing proteins with improved solubility by co-expressing with molecular chaperones in Escherichia coli. Nat Protoc. 2007;2(10):2632–9.
Article
PubMed
CAS
Google Scholar
Mahalik S, Sharma AK, Mukherjee KJ. Genome engineering for improved recombinant protein expression in Escherichia coli. Microb Cell Factories. 2014;13:177.
Article
CAS
Google Scholar
Hatahet F, Boyd D, Beckwith J. Disulfide bond formation in prokaryotes: history, diversity and design. Biochim Biophys Acta. 2014;1844(8):1402–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bardwell JC, McGovern K, Beckwith J. Identification of a protein required for disulfide bond formation in vivo. Cell. 1991;67(3):581–9.
Article
CAS
PubMed
Google Scholar
Bader MW, Xie T, Yu CA, Bardwell JC. Disulfide bonds are generated by quinone reduction. J Biol Chem. 2000;275(34):26082–8.
Article
CAS
PubMed
Google Scholar
Kurokawa Y, Yanagi H, Yura T. Overexpression of protein disulfide isomerase DsbC stabilizes multiple-disulfide-bonded recombinant protein produced and transported to the periplasm in Escherichia coli. Appl Environ Microbiol. 2000;66(9):3960–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sandee D, Tungpradabkul S, Kurokawa Y, Fukui K, Takagi M. Combination of Dsb coexpression and an addition of sorbitol markedly enhanced soluble expression of single-chain Fv in Escherichia coli. Biotechnol Bioeng. 2005;91(4):418–24.
Article
CAS
PubMed
Google Scholar
Schäfer U, Beck K, Müller M. Skp, a molecular chaperone of gram-negative bacteria, is required for the formation of soluble periplasmic intermediates of outer membrane proteins. J Biol Chem. 1999;274(35):24567–74.
Article
PubMed
Google Scholar
Baneyx F, Mujacic M. Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol. 2004;22(11):1399–408.
Article
CAS
PubMed
Google Scholar
Hayhurst A, Harris WJ. Escherichia coli skp chaperone coexpression improves solubility and phage display of single-chain antibody fragments. Protein Expr Purif. 1999;15(3):336–43.
Article
CAS
PubMed
Google Scholar
Freudl R. Signal peptides for recombinant protein secretion in bacterial expression systems. Microb Cell Factories. 2018;17(1):52.
Article
CAS
Google Scholar
Dalbey RE, Wang P, van Dijl JM. Membrane proteases in the bacterial protein secretion and quality control pathway. Microbiol Mol Biol Rev. 2012;76(2):311–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Novak P, Dev IK. Degradation of a signal peptide by protease IV and oligopeptidase a. J Bacteriol. 1988;170(11):5067–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cai D, Wang H, He P, Zhu C, Wang Q, Wei X, et al. A novel strategy to improve protein secretion via overexpression of the SppA signal peptide peptidase in Bacillus licheniformis. Microb Cell Factories. 2017;16(1):70.
Article
CAS
Google Scholar
Kim AC, Oliver DC, Paetzel M. Crystal structure of a bacterial signal peptide peptidase. J Mol Biol. 2008;376(2):352–66.
Article
CAS
PubMed
Google Scholar
Nam SE, Kim AC, Paetzel M. Crystal structure of Bacillus subtilis signal peptide peptidase a. J Mol Biol. 2012;419(5):347–58.
Article
CAS
PubMed
Google Scholar
Jones CH, Dexter P, Evans AK, Liu C, Hultgren SJ, Hruby DE. Escherichia coli DegP protease cleaves between paired hydrophobic residues in a natural substrate: the PapA pilin. J Bacteriol. 2002;184(20):5762–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Snedecor B, Nishihara JC, Joly JC, McFarland N, Andersen DC, et al. High-level accumulation of a recombinant antibody fragment in the periplasm of Escherichia coli requires a triple-mutant (degP prc spr) host strain. Biotechnol Bioeng. 2004;85(5):463–74.
Article
CAS
PubMed
Google Scholar
Georgiou G, Baneyx F. Bacterial host strains for producing proteolytically sensitive polypeptides. US Patent. 1996;5:508–192.
Google Scholar
Kandilogiannaki M, Koutsoudakis G, Zafiropoulos A, Krambovitis E. Expression of a recombinant human anti-MUC1 scFv fragment in protease-deficient Escherichia coli mutants. Int J Mol Med. 2001;7(6):659–64.
CAS
PubMed
Google Scholar
Balzer S, Kucharova V, Megerle J, Lale R, Brautaset T, Valla S. A comparative analysis of the properties of regulated promoter systems commonly used for recombinant gene expression in Escherichia coli. Microb Cell Factories. 2013;12:26.
Article
CAS
Google Scholar
Sletta H, Tøndervik A, Hakvåg S, Aune TE, Nedal A, Aune R, et al. The presence of N-terminal secretion signal sequences leads to strong stimulation of the total expression levels of three tested medically important proteins during high-cell-density cultivations of Escherichia coli. Appl Environ Microbiol. 2007;73(3):906–12.
Article
CAS
PubMed
Google Scholar
ibby RT, Braedt G, Kronheim SR, March CJ, Urdal DL, Chiaverotti TA, et al. Expression and purification of native human granulocyte-macrophage colony-stimulating factor from an Escherichia coli secretion vector. DNA. 1987;6(3):221–9.
Article
Google Scholar
Salis HM, Mirsky EA, Voigt CA. Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol. 2009;27(10):946–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salis HM. The ribosome binding site calculator. Methods Enzymol. 2011;498:19–42.
Article
CAS
PubMed
Google Scholar
Ronda C, Pedersen LE, Sommer MO, Nielsen AT. CRMAGE: CRISPR optimized MAGE Recombineering. Sci Rep. 2016;6:19452.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lauritsen I, Porse A, Sommer MOA, Nørholm MHH. A versatile one-step CRISPR-Cas9 based approach to plasmid-curing. Microb Cell Factories. 2017;16(1):135.
Article
CAS
Google Scholar
Selas Castiñeiras T, Williams SG, Hitchcock AG, Smith DC. E. coli strain engineering for the production of advanced biopharmaceutical products. FEMS Microbiol Lett. 2018;365(15).
Burdette LA, Leach SA, Wong HT, Tullman-Ercek D. Developing gram-negative bacteria for the secretion of heterologous proteins. Microb Cell Factories. 2018;17(1):196.
Article
CAS
Google Scholar
Browning DF, Richards KL, Peswani AR, Roobol J, Busby SJW, Robinson C. Escherichia coli "TatExpress" strains super-secrete human growth hormone into the bacterial periplasm by the tat pathway. Biotechnol Bioeng. 2017;114(12):2828–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pfleger BF, Pitera DJ, Smolke CD, Keasling JD. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol. 2006;24(8):1027–32.
Article
CAS
PubMed
Google Scholar
Daley D, Mirzadeh K, Toddo S, Guntur S. Selective optimization of a ribosome binding site for protein production. US20180273934A1; 2018.
Oesterle S, Gerngross D, Schmitt S, Roberts TM, Panke S. Efficient engineering of chromosomal ribosome binding site libraries in mismatch repair proficient Escherichia coli. Sci Rep. 2017;7(1):12327.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stern B, Optun A, Liesenfeld M, Gey C, Gräfe M, Pryme IF. Enhanced protein synthesis and secretion using a rational signal-peptide library approach as a tailored tool. BMC Proc, 5. 2011;(Suppl 8):O13.
Tan J, Lu Y, Bardwell JC. Mutational analysis of the disulfide catalysts DsbA and DsbB. J Bacteriol. 2005;187(4):1504–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Marco A, Vigh L, Diamant S, Goloubinoff P. Native folding of aggregation-prone recombinant proteins in Escherichia coli by osmolytes, plasmid- or benzyl alcohol-overexpressed molecular chaperones. Cell Stress Chaperones. 2005;10(4):329–39.
Article
PubMed
PubMed Central
Google Scholar
Ge X, Wang R, Ma J, Liu Y, Ezemaduka AN, Chen PR, et al. DegP primarily functions as a protease for the biogenesis of beta-barrel outer membrane proteins in the gram-negative bacterium Escherichia coli. FEBS J. 2014;281(4):1226–40.
Article
CAS
PubMed
Google Scholar
Ow DS, Lim DY, Nissom PM, Camattari A, Wong VV. Co-expression of Skp and FkpA chaperones improves cell viability and alters the global expression of stress response genes during scFvD1.3 production. Microb Cell Factories. 2010;9:22.
Article
CAS
Google Scholar
Blatny JM, Brautaset T, Winther-Larsen HC, Haugan K, Valla S. Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon. Appl Environ Microbiol. 1997;63(2):370–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gawin A, Valla S, Brautaset T. The XylS/pm regulator/promoter system and its use in fundamental studies of bacterial gene expression, recombinant protein production and metabolic engineering. Microb Biotechnol. 2017;10(4):702–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lutz R, Bujard H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 1997;25(6):1203–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6(5):343–5.
Article
CAS
PubMed
Google Scholar
Neu HC, Heppel LA. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem. 1965;240(9):3685–92.
CAS
PubMed
Google Scholar
Hong T, Kong A, Lam J, Young L. Periplasmic alkaline phosphatase activity and abundance in Escherichia coli B23 and C29 during exponential and stationary phase. J Exper Microbiol Immunol. 2007;11:8–13.
Google Scholar
Hulett-Cowling FM, Campbell LL. Purification and properties of an alkaline phosphatase of Bacillus licheniformis. Biochemistry. 1971;10(8):1364–71.
Article
CAS
PubMed
Google Scholar
Brickman E, Beckwith J. Analysis of the regulation of Escherichia coli alkaline phosphatase synthesis using deletions and phi80 transducing phages. J Mol Biol. 1975;96(2):307–16.
Article
CAS
PubMed
Google Scholar
Radziwill NM. Statistics (the easier way) with R. 2nd ed. Lapis Lucera. 2017.