Buchner P. Endosymbiosis of animals with plant microorganisms. New York: John Wiley & Sons, Inc.: Interscience Publ; 1965.
Google Scholar
Dale C, Moran NA. Molecular interactions between bacterial symbionts and their hosts. Cell. 2006;126:453–65.
Article
CAS
PubMed
Google Scholar
Douglas AE. Buchnera bacteria and other symbionts of aphids. In: Bourtzis K, Miller TA, editors. Insect symbiosis, vol. 1. Boca Raton: CRC Press; 2003. p. 23–38.
Chapter
Google Scholar
Baumann P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol. 2005;59:155–89.
Article
CAS
PubMed
Google Scholar
Kaltenpoth M, Winter SA, Kleinhammer A. Localization and transmission route of Coriobacterium glomerans, the endosymbiont of pyrrhocorid bugs. FEMS Microbiol Ecol. 2009;69:373–83.
Article
CAS
PubMed
Google Scholar
Prado SS, Golden M, Follett PA, Daugherty MP, Almeida RPP. Demography of gut symbiotic and aposymbiotic Nezara viridula L. (Hemiptera: Pentatomidae). Environ Entomol. 2009;38:103–9.
Article
PubMed
Google Scholar
Szklarzewicz T, Michalik A. Transovarial transmission of symbionts in insects. In: Kloc M, editor. Oocytes. Maternal information and functions. Cham: Springer International Publishing; 2017. p. 43–67.
Chapter
Google Scholar
Nardon P. Ovogenèse et transmission des bactéries symbiotiques chez le charançon Sitophilus oryzae L. (Coleoptera: Curculionoidea). Ann soc Entomol Fr. 2006;42:129–64.
Article
Google Scholar
Wang Y, Rozen DE. Gut microbiota colonization and transmission in the burying beetle Nicrophorus vespilloides throughout development. Appl Environ Microb. 2017;83:9.
Google Scholar
Moran NA, Dunbar HE. Sexual acquisition of beneficial symbionts in aphids. Proc Natl Acad Sci U S A. 2006;103:12803–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peccoud J, Bonhomme J, Maheo F, de la Huerta M, Cosson O, Simon JC. Inheritance patterns of secondary symbionts during sexual reproduction of pea aphid biotypes. Insect Sci. 2014;21:291–300.
Article
CAS
PubMed
Google Scholar
Lauzon CR. Symbiotic relationships of tephritids. In: Bourtzis K, Miller TA, editors. Insect symbiosis, vol. 1. Boca Raton: CRC Press; 2003. p. 115–29.
Chapter
Google Scholar
White IM, Elson-Harris MM. Fruit flies of economic significance: their identification and bionomics. Wallingford: CAB International; 1992.
Google Scholar
Douglas AE. Symbiotic microorganisms: untapped resources for insect pest control. Trends Biotechnol. 2007;25:338–42.
Article
CAS
PubMed
Google Scholar
Capuzzo C, Firrao G, Mazzon L, Squartini A, Girolami V. ‘Candidatus Erwinia dacicola’, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). Int J Syst Evol Microbiol. 2005;55:1641–7.
Article
CAS
PubMed
Google Scholar
Petri L. Ricerche sopra i batteri intestinali della Mosca olearia. Mem Reg Staz Patol veg. 1909:1–129.
Petri L. In qual modo il bacillo della mosca olearia venga trasmesso alla larva. Atti R Acc Lincei Rend Cl sc fis mat nat. 1907;16:899–900.
Google Scholar
Drew RAI, Lloyd AC. Bacteria associated with fruit flies and their host plants. In: Robinson AS, Hooper G, editors. Fruit flies: their biology, natural enemies and control, vol. 3A. Amsterdam: Elsevier; 1989. p. 131–40.
Google Scholar
Estes AM, Hearn DJ, Bronstein JL, Pierson EA. The olive fly endosymbiont, “Candidatus Erwinia dacicola,” switches from an intracellular existence to an extracellular existence during host insect development. Appl Environ Microb. 2009;75:7097–106.
Article
CAS
Google Scholar
Sacchetti P, Granchietti A, Landini S, Viti C, Giovanetti L, Belcari A. Relationships between the olive fly and bacteria. J App Entomol. 2008;132:682–9.
Article
Google Scholar
Savio C, Mazzon L, Martinez-Sanudo I, Simonato M, Squartini A, Girolami V. Evidence of two lineages of the symbiont ‘Candidatus Erwinia dacicola’ in Italian populations of Bactrocera oleae (Rossi) based on 16S rRNA gene sequences. Int J Syst Evol Microbiol. 2012;62:179–87.
Article
CAS
PubMed
Google Scholar
Bigiotti G, Pastorelli R, Guidi R, Belcari A, Sacchetti P. Horizontal transfer and finalization of a reliable detection method for the olive fruit fly endosymbiont, Candidatus Erwinia dacicola. BMC Biotechnol. this issue. https://doi.org/10.1186/s12896-019-0583-x.
Ben-Yosef M, Pasternak Z, Jurkevitch E, Yuval B. Symbiotic bacteria enable olive fly larvae to overcome host defences. Roy Soc open Sci. 2015;2:150170.
Article
CAS
Google Scholar
Ben-Yosef M, Aharon Y, Jurkevitch E, Yuval B. Give us the tools and we will do the job: symbiotic bacteria affect olive fly fitness in a diet-dependent fashion. P R Soc B. 2010;277:1545–52.
Article
CAS
Google Scholar
Ben-Yosef M, Pasternak Z, Jurkevitch E, Yuval B. Symbiotic bacteria enable olive flies (Bactrocera oleae) to exploit intractable sources of nitrogen. J Evolution Biol. 2014;27:2695–705.
Article
CAS
Google Scholar
Mazzini M, Vita G. Identificazione submicroscopica del meccanismo di trasmissione del batterio simbionte in Dacus oleae (Gmelin) (Diptera, Trypetidae). Redia. 1983;64:277–301.
Google Scholar
Estes AM, Nestel D, Belcari A, Jessup A, Rempoulakis P, Economopoulos A. A basis for the renewal of sterile insect technique for the olive fly, Bactrocera oleae (Rossi). J Appl Entomol. 2012;136:1–16.
Article
Google Scholar
Tzanakakis ME. Dacus oleae. In: Robinson AS, Hooper G, editors. Fruit flies: their biology, natural enemies and control, vol. B - (World crop pests; 3B). Amsterdam: Elsevier; 1989. p. 105–18.
Google Scholar
Belcari A, Sacchetti P, Marchi G, Surico G. La mosca delle olive e la simbiosi batterica. Inf Fitopatol. 2003;9:55–9.
Google Scholar
Rempoulakis P, Dimou I, Chrysargyris A, Economopoulos AP. Improving olive fruit fly Bactrocera oleae (Diptera: Tephritidae) adult and larval artificial diets, microflora associated with the fly and evaluation of a transgenic olive fruit fly strain. Int J Trop Insect Sci. 2014;34:S114–22.
Article
Google Scholar
Zervas GA, Economopoulos AP. Mating frequency in caged populations of wild and artificially reared (normal or gamma -sterilized) olive fruit flies. Environ Entomol. 1982;11:17–20.
Article
Google Scholar
Zygouridis NE, Argov Y, Nemny-Lavy E, Augustinos A, Nestel D, Mathiopoulos K. Genetic changes during laboratory domestication of an olive fly SIT strain. J Appl Entomol. 2014;138:423–32.
Article
Google Scholar
Sacchetti P, Ghiardi B, Granchietti A, Stefanini FM, Belcari A. Development of probiotic diets for the olive fly: evaluation of their effects on fly longevity and fecundity. Ann Appl Biol. 2014;164:138–50.
Article
CAS
Google Scholar
Dimou I, Rempoulakis P, Economopoulos AP. Olive fruit fly [Bactrocera (Dacus) oleae (Rossi) (Diptera: Tephritidae)] adult rearing diet without antibiotic. J App Entomol. 2010;134:72–9.
Article
Google Scholar
Estes AM, Hearn DJ, Burrack HJ, Rempoulakis P, Pierson EA. Prevalence of Candidatus Erwinia dacicola in wild and laboratory olive fruit fly populations and across developmental stages. Environ Entomol. 2012;41:265–74.
Article
PubMed
Google Scholar
Felske A, Engelen B, Nübel U, Backhaus H. Direct ribosome isolation from soil to extract bacterial rRNA for community analysis. Appl Environ Microb. 1996;62:4162–7.
CAS
Google Scholar
Munson MA, Baumann P, Clark MA, Baumann L, Moran NA, Voegtli DJ, Campbell BC. Evidence for the establishment of aphid-eubacterium endosymbiosis in an ancestor of four aphid families. J Bacteriol. 1991;173:6321–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29:e45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Øvreas L, Forney L, Daae FL, Torsvik V. Distribution of bacterioplankton in meromictic lake Saelevannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol. 1997;63:3367–73.
PubMed
PubMed Central
Google Scholar
Sokal RR, Rohlf FJ. Biometry. 3rd ed. New York: WH Freeman and Company; 1995.
Google Scholar
Tsitsipis JA. Mass rearing of the olive fruit fly, Dacus oleae (Gmelin), at ‘Democritos’. In: Panel and research co-ordination meeting on the sterile-male technique for control of fruit flies; IAEA-PL-58279; 1975. p. 93–100.
Google Scholar
Manoukas AG, Mazomenos BE. Effect of antimicrobials upon eggs and larvae of Dacus oleae (Diptera, Tephritidae) and the use of propionates for larval diet preservation. Ann Zool Ècol Anim. 1977;9:277–85.
CAS
Google Scholar
Jay JM, Loessner MJ, Golden DA. Modern food microbiology. 7th ed. New York: Springer Science + Business media; 2005.
Google Scholar
Funke BR. Mold control for insect-rearing media. Bull Entomol Soc Am. 1983;29:41–4.
Google Scholar
Cohen AC. Insect diets: science and technology. Boca Raton: CRC Press; 2004.
Google Scholar
Sikorowski PP, Lawrence AM. Microbial contamination and insect rearing. Am Entomol. 1994;40:240–53.
Article
Google Scholar
Kemp BM, Smith DG. Use of bleach to eliminate contaminating DNA from the surface of bones and teeth. Forensic Sci Int. 2005;154:53–61.
Article
CAS
PubMed
Google Scholar
Navrozidis EI, Tzanakakis ME. Tomato fruits as an alternative host for a laboratory strain of the olive fruit fly Bactrocera oleae. Phytoparasitica. 2005;33:225–36.
Article
Google Scholar
Ahmad S, Wornoayporn V, Rempoulakis P, Fontenot EA, Ihsan UH, Caceres C, Paulus HF, Vreysen MJB. Hybridization and use of grapes as an oviposition substrate improves the adaptation of olive fly Bactrocera oleae (Rossi) (Diptera: Tephritidae) to artificial rearing conditions. Int J Ind Entomol. 2014;29:198–206.
Google Scholar
Ras E, Beukeboom LW, Caceres C, Bourtzis K. Review of the role of gut microbiota in mass rearing of the olive fruit fly, Bactrocera oleae, and its parasitoids. Entomol Exp Appl. 2017;164:237–56.
Article
Google Scholar
Inglis D, Sikorowski PP. Microbial contamination and insect rearing. In: Schneider JC, editor. Principles and procedures for rearing high- quality insects. Mississippi State: Mississippi State University; 2009. p. 224–88.
Google Scholar
Tsakas SC, Zouros E. Genetic differences among natural and laboratory-reared populations of the olive fruit fly Dacus oleae (Diptera: Tephritidae). Entomol Exp Appl. 1980;28:268–76.
Article
Google Scholar
Economopoulos AP, Loukas M. ADH allele frequency changes in olive fruit flies shift from olives to artificial larval food and vice versa, effect of temperature. Entomol Exp Appl. 1986;40:215–21.
Article
Google Scholar
Konstantopoulou MA, Economopoulos AP, Manoukas AG. Olive fruit fly (Diptera: Tephritidae) ADH allele selected under artificial rearing produced bigger flies than other ADH alleles. J Econ Entomol. 1996;89:1387–91.
Article
Google Scholar
Fytizas E, Tzanakakis ME. Some effects of streptomycin, when added to the adult food, on the adults of Dacus oleae (Diptera: Tephritidae) and their progeny. Ann Entomol Soc Am. 1966;59:269–73.
Article
CAS
Google Scholar
Konstantopoulou MA, Raptopoulos DG, Stavrakis GN, Mazomenos BE. Microflora species and their volatile compounds affecting development of an alcohol dehydrogenase homozygous strain (Adh-I) of Bactrocera (Dacus) oleae (Diptera : Tephritidae). J Econ Entomol. 2005;98:1943–9.
Article
CAS
PubMed
Google Scholar
Alverson J, Cohen AC. Effect of antifungal agents on biological fitness of Lygus hesperus (Heteroptera: Miridae). J Econ Entomol. 2002;95:256–60.
Article
CAS
PubMed
Google Scholar
Sridhar J, Sharma K. Effect of different combinations of antimicrobial agents on biological fitness and fecundity of tobacco caterpillar (Spodoptera litura) (Lepidoptera: Noctuidae) reared on meridic diet. Indian J Agr Sci. 2013;83:708–16.
CAS
Google Scholar
Mouzaki DG, Zarani FE, Margaritis LH. Structure and morphogenesis of the eggshell and micropylar apparatus in the olive fly, Dacus oleae [Bactrocera oleae] (Diptera, Tephritidae). J Morphol. 1991;209:39–52.
Article
CAS
PubMed
Google Scholar
Genc H. Embryonic development of the olive fruit fly, Bactrocera oleae Rossi (Diptera: Tephritidae), in vivo. Turk J Zool. 2014;38:598–602.
Article
Google Scholar
Solinas M, Nuzzaci G. Functional anatomy of Dacus oleae Gmel. Female genitalia in relation to insemination and fertilization processes. Entomologica. 1984;19:135–65.
Google Scholar
Margaritis LH. Comparative study of the eggshell of the fruit flies Dacus oleae and Ceratitis capitata (Diptera: Trypetidae). Can J Zool. 1985;63:2194–206.
Article
Google Scholar
Williamson DL. Oogenesis and spermatogenesis. In: Robinson AS, Hooper G, editors. Fruit flies: their biology, natural enemies and control, vol. A - (World crop pests; 3A). Amsterdam: Elsevier; 1989. p. 141–51.
Google Scholar
Schutze MK, Aketarawong N, Amornsak W, Armstrong KF, Augustinos AA, Barr N, et al. Synonymization of key pest species within the Bactrocera dorsalis species complex (Diptera: Tephritidae): taxonomic changes based on a review of 20 years of integrative morphological, molecular, cytogenetic, behavioural and chemoecological data. Syst Entomol. 2015;40:456–71.
Article
Google Scholar
Danjuma S, Thaochan N, Permkam S, Satasook C. Egg morphology of two sibling species of the Bactrocera dorsalis complex Hendel (Diptera: Tephritidae). J Entomol Zool Stud. 2015;3:268–73.
Google Scholar
Dutra VS, Ronchi-Teles B, Steck GJ, Silva JG. Egg morphology of Anastrepha spp. (Diptera: Tephritidae) in the fraterculus group using scanning Electron microscopy. Ann Entomol Soc Am. 2011;104:16–24.
Article
Google Scholar
Dantur KI, Enrique R, Welin B, Castagnaro AP. Isolation of cellulolytic bacteria from the intestine of Diatraea saccharalis larvae and evaluation of their capacity to degrade sugarcane biomass. AMB Express. 2015;5:15.
Article
PubMed
PubMed Central
CAS
Google Scholar
Singh D, Khullar N. 16S rRNA gene sequencing of the most regnant and pernicious pests Brevundimonas diminuta, Craterium leucocephalum and Diachea leucopodia associated with dried preserved forensically valuable Calliphorids. J Entomol Zool Stud. 2015;3:134–7.
Google Scholar
Tchioffo MT, Boissière A, Churcher TS, Abate L, Gimonneau G, Nsango SE, Nsango SE, Awono-Ambéné PH, Christen R, Berry A, Morlais I. Modulation of malaria infection in Anopheles gambiae mosquitoes exposed to natural midgut bacteria. PLoS One. 2013;8:e81663.
Article
PubMed
PubMed Central
CAS
Google Scholar