Moore KM, Knauft DA. The inheritance of high oleic acid in peanut. J Hered. 1989;80:252–3.
Article
Google Scholar
O’Keefe SF, Wiley VA, Knauft DA. Comparison of oxidative stability of high and normal oleic peanut oils. J Am Oil Chem Soc. 1993;70:489–92.
Article
Google Scholar
Grundy SM. Comparison of monounsaturated fatty acids and carbohydrates for lowering plasma cholesterol in man. New Eng J Med. 1986;314:745–8.
Article
CAS
PubMed
Google Scholar
Teres S, et al. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc Natl Acad Sci U S A. 2008;105:13811–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guan L, Wang Y, Shen H, Hou K, Xu Y, Wu W. Molecular cloning and expression analysis of genes encoding two microsomal oleate desaturases (FAD2) from safflower (Carthamus tinctorius L.). Plant Mol Biol Rep. 2012;30:139–48.
Article
CAS
Google Scholar
Norden AJ, Gorbet DW, Knauft DA, Young CT. Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci. 1987;14:7–11.
Article
CAS
Google Scholar
Chu Y, Holbrook CC, Ozias-Akins P. Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut. Crop Sci. 2009;49:2029–36.
Article
CAS
Google Scholar
Schwartzbeck JL, et al. Endoplasmic oleoyl-PC desaturase references the second double bond. Phytochemistry. 2001;57:643–52.
Article
CAS
PubMed
Google Scholar
Jung S, Powell G, Moore K, Abbott A. The high oleate trait in the cultivated peanut (Arachis hypogaea L.) II. Molecular Bais and genetics of the trait. Mol Gen Genet. 2000;263:806–11.
Article
CAS
PubMed
Google Scholar
Lopez Y, Nadaf HL, Smith OD, Connell JP, Reddy AS, Fritz AK. Isolation and characterization of the Delta(12) fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines. Theor Appl Genet. 2000;101:1131–8.
Article
CAS
Google Scholar
Bruner AC, Jung S, Abbott AG, Powell GL. The naturally occurring high oleate oil character in some peanut varieties results from reduced oleoyl-PC desaturase activity from mutation of aspartate 150 to asparagine. Crop Sci. 2001;41:522–6.
Article
CAS
Google Scholar
Sharma ND, Mehta SL, Patil SH, Eggum BO. Oil and protein quality of groundnut mutatants. Qual Plant Foods Hum Nutr. 1981;31:85–90.
Article
CAS
Google Scholar
Dwivedi SL, Nigam SN, Prasad MVR. Induced genetic variation for seed quality traits in groundnut. Int Arachis Newslett. 1998;18:44–6.
Google Scholar
Badigannavar AM. Gamma ray induced groundnut mutants with modified fatty acid composition. In: Extended Summary: National Seminar on Changing Global Vegetable Oils Scenario: Issues and Challenges Before India. Hyderabad: Indian Society of Oilseeds Research; 2007. p. 35–6.
Google Scholar
Mondal S, Badigannavar AM, D’Souza SF. Induced variability for fatty acid profile and molecular characterization of high oleate mutant in cultivated groundnut (Arachis hypogaea L.). Plant Breed. 2011;130:242–7.
Article
CAS
Google Scholar
Wang ML, Tonnis B, Charles YQ, Pinnow D, Tishchenko V, Pederson GA. Newly identified natural high-oleate mutant from Arachis hypogaea L. subsp hypogaea. Mol Breed. 2015;35:186.
Article
Google Scholar
Nawade B, et al. Insights into the Indian peanut genotypes for ahFAD2 gene polymorphism regulating its oleic and linoleic acid fluxes. Front Plant Sci. 2016;7:1271.
Article
PubMed
PubMed Central
Google Scholar
Gratz SJ, et al. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics. 2013;194:1029–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ran FA, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154:1380–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods. 2013;9:39.
Article
PubMed
PubMed Central
Google Scholar
Yu Z, et al. Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila. Genetics. 2013;195:289–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR/Cas9 for genome engineering. Cell. 2014;157:1262–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bassett AR, Liu JL. CRISPR/Cas9 and genome editing in Drosophila. JGG. 2014;41:7–19.
CAS
Google Scholar
Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol. 2015;15:16.
Article
PubMed
PubMed Central
Google Scholar
Chu Y, Ramos ML, Holbrook CC, Ozias-Akins P. Genetic mutation of oleoyl-PC desaturase (ahFAD2A) in the mini-core collection of the US peanut germplasm collection. Crop Sci. 2007;47:2372–8.
Article
CAS
Google Scholar
Lei Y, Jiang HF, Wen QG, Huang JQ, Yan LY, Liao BS. Frequencies of ahFAD2A alleles in Chinese peanut mini core collection and its correlation with oleic acid content. Acta Agron Sin. 2010;36(11):1864–9.
Article
CAS
Google Scholar
Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A. High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet. 2004;108:1492–502.
Article
CAS
PubMed
Google Scholar
Yin DM, Deng SZ, Zhen KH, Cui DQ. High-oleic peanut oils produced by hpRNA-mediated gene silencing of oleate desaturase. Plant Mol Biol Rep. 2007;25:154–63.
Article
CAS
Google Scholar
Nadaf HL, Biradar K, Murthy GSS, Krishnaraj PU, Bhat RS, Pasha MA, Yerimani AS. Novel mutations in oleoyl-PC desaturase (ahFAD2B) identified from new high oleic mutants induced by gamma rays in peanut. Crop Sci. 2017;57:2538–46.
Article
CAS
Google Scholar
Mallikarjuna G, Rao TSRB, Kirti PB. Genetic engineering for Peanut improvement: current status and prospects. Plant Cell Tissue Organ Cult. 2016;125(3):399–416.
Article
CAS
Google Scholar
Gantait S, Mondal S. Transgenic approaches for genetic improvement in groundnut (Arachis hypogaea L.) against major biotic and abiotic stress factors. J Genet Eng Biotechnol. 2018;16(2):537–44.
Article
PubMed
PubMed Central
Google Scholar
Hsieh YF, Jain M, Wang JP, Gallo M. Direct organogenesis from cotyledonary node explants suitable for agrobacterium-mediated transformation in peanut (Arachis hypogaea L.). Plant Cell Tissue Organ Cult. 2017;128:161–75.
Article
CAS
Google Scholar
Kagale S, et al. The emerging biofuel crop Camelina sative retains a highly undifferentiated hexaploid genome structure. Nat Commun. 2014;5:3706.
Article
CAS
PubMed
Google Scholar
Kagale S, et al. The developmental transcriptome atlas of the biofuel crop Camelina sativa. Plant J. 2016. https://doi.org/10.1111/tpj.13302.
Article
CAS
PubMed
Google Scholar
Wang Y, Zhang XG, Li HM, Zhen YY, Cui DQ, Yin DM. Correlation between genetype of ahFAD2 and oleic/linoleic acid value in the different peanut varieties. Mol Plant Breeding. 2015;13(6):1318–22.
CAS
Google Scholar
Morineau C, et al. Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa. Plant Biotech J. 2017;15:729–39.
Article
CAS
Google Scholar
Lei Y, Lu L, Liu HY, Li S, Xing F, Chen LL. CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant. 2014;7(9):1494–6. http://cbi.hzau.edu.cn/cgi-bin/CRISPR. https://doi.org/10.1093/mp/ssu044.
Article
CAS
PubMed
Google Scholar
Jacobs TB, Martin GB. High-throughput CRISPR vector construction and characterization of DNA modifications by generation of tomato hairy roots. J Visualized Experiments. 2016;110:e53843. https://doi.org/10.3791/53843.
Article
CAS
Google Scholar
Murray MG, Thompson WF. Rapid isolation of high molecular-weight plant DNA. Nucleic Acids Res. 1980;8(19):4321–5.
Article
CAS
PubMed
PubMed Central
Google Scholar