Terra IA, Portugal CS, Becker-Ritt AB. Plant antimicrobial peptides. In: The battle against microbial pathogens: basic science, technological advances and educational programs, vol. 1; 2015. p. 199–207.
Google Scholar
Brown DG, Lister T, May-Dracka TL. New natural products as new leads for antibacterial drug discovery. Bioorg Med Chem Lett. 2014;24(2):413–8.
Article
CAS
Google Scholar
Berrocal-Lobo M, Segura A, Moreno M, Lopez G, Garcia-Olmedo F, Molina A. Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol. 2002;128(3):951–61.
Article
CAS
Google Scholar
Segura A, Moreno M, Madueno F, Molina A, Garcia-Olmedo F. Snakin-1, a peptide from potato that is active against plant pathogens. Mol Plant-Microbe Interact. 1999;12(1):16–23.
Article
CAS
Google Scholar
Harris PW, Yang SH, Molina A, Lopez G, Middleditch M, Brimble MA. Plant antimicrobial peptides snakin-1 and snakin-2: chemical synthesis and insights into the disulfide connectivity. Chemistry. 2014;20(17):5102–10.
Article
CAS
Google Scholar
Kovalskaya N, Hammond RW. Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins. Protein Expr Purif. 2009;63(1):12–7.
Article
CAS
Google Scholar
Lopez-Solanilla E, Gonzalez-Zorn B, Novella S, Vazquez-Boland JA, Rodriguez-Palenzuela P. Susceptibility of Listeria monocytogenes to antimicrobial peptides. FEMS Microbiol Lett. 2003;226(1):101–5.
Article
CAS
Google Scholar
Almasia NI, Bazzini AA, Hopp HE, Vazquez-Rovere C. Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants. Mol Plant Pathol. 2008;9(3):329–38.
Article
CAS
Google Scholar
Nahirnak V: Análisis funcional de Snakin-1 en plantas transgénicas de Solanum tuberosum. Escuela para Graduados Ing Agr Alberto Soriano, Facultad de Agronomía – Universidad de Buenos Aires (Tesis Doctoral) 2015.
Google Scholar
Nahirnak V, Almasia NI, Fernandez PV, Hopp HE, Estevez JM, Carrari F, Vazquez-Rovere C. Potato snakin-1 gene silencing affects cell division, primary metabolism, and cell wall composition. Plant Physiol. 2012;158(1):252–63.
Article
CAS
Google Scholar
Nahirnak V, Almasia NI, Hopp HE, Vazquez-Rovere C. Snakin/GASA proteins: involvement in hormone crosstalk and redox homeostasis. Plant Signal Behav. 2012;7(8):1004–8.
Article
CAS
Google Scholar
Nahirñak V, Rivarola M, Gonzalez de Urreta M, Paniego N, Hopp HE, Almasia NI, Vazquez-Rovere C. Genome-wide analysis of the Snakin/GASA gene family in Solanum Tuberosum cv. Kennebec. Am J Potato Res. 2016;93(2):172–88.
Article
Google Scholar
Porto WF, Franco OL. Theoretical structural insights into the snakin/GASA family. Peptides. 2013;44:163–7.
Article
CAS
Google Scholar
He HT, Gursoy RN, Kupczyk-Subotkowska L, Tian J, Williams T, Siahaan TJ. Synthesis and chemical stability of a disulfide bond in a model cyclic pentapeptide: cyclo(1,4)-Cys-Gly-Phe-Cys-Gly-OH. J Pharm Sci. 2006;95(10):2222–34.
Article
CAS
Google Scholar
Li Y. Recombinant production of antimicrobial peptides in Escherichia Coli: a review. Protein Expr Purif. 2011;80(2):260–7.
Article
CAS
Google Scholar
Kuddus MR, Yamano M, Rumi F, Kikukawa T, Demura M, Aizawa T. Enhanced expression of cysteine-rich antimicrobial peptide snakin-1 in Escherichia coli using an aggregation-prone protein coexpression system. Biotechnol Prog. 2017. doi:10.1002/btpr.2508.
Rong W, Qi L, Wang J, Du L, Xu H, Wang A, Zhang Z. Expression of a potato antimicrobial peptide SN1 increases resistance to take-all pathogen Gaeumannomyces graminis var. tritici in transgenic wheat. Funct Integr Genomics. 2013;13(3):403–9.
Article
CAS
Google Scholar
Jiang W, Liu X, Zhang Z. Cloning and Overexpression of Defensin SN1 in Escherichia Coli and its antifungal assay. J Plant Genet Resour. 2011;12(2):286–90.
CAS
Google Scholar
Meiyalaghan S, Latimer JM, Kralicek AV, Shaw ML, Lewis JG, Conner AJ, Barrell PJ. Expression and purification of the antimicrobial peptide GSL1 in bacteria for raising antibodies. BMC Res Notes. 2014;7:777.
Article
Google Scholar
Herbel V, Schafer H, Wink M. Recombinant production of Snakin-2 (an antimicrobial peptide from tomato) in E. Coli and analysis of its bioactivity. Molecules. 2015;20(8):14889–901.
Article
CAS
Google Scholar
Kuddus MR, Rumi F, Tsutsumi M, Takahashi R, Yamano M, Kamiya M, Kikukawa T, Demura M, Aizawa T. Expression, purification and characterization of the recombinant cysteine-rich antimicrobial peptide snakin-1 in Pichia Pastoris. Protein Expr Purif. 2016;122:15–22.
Article
CAS
Google Scholar
He Y, Wang K, Yan N. The recombinant expression systems for structure determination of eukaryotic membrane proteins. Protein Cell. 2014;5(9):658–72.
Article
CAS
Google Scholar
Spinas N: The efficacy of the antimicrobial peptides D4E1, VvAMP-1 and Snakin1 against the grapevine pathogen aster yellows phytoplasma. Thesis presented in partial fulfilment of the requirements for the degree Master of Science in Genetics at Stellenbosch University 2013.
Google Scholar
Yeung H, Squire CJ, Yosaatmadja Y, Panjikar S, Lopez G, Molina A, Baker EN, Harris PW, Brimble MA. Radiation Damage and Racemic Protein Crystallography Reveal the Unique Structure of the GASA/Snakin Protein Superfamily. Angew Chem Int Ed Engl. 2016;55(28):7930-3.
Wang G, Mishra B, Lau K, Lushnikova T, Golla R, Wang X. Antimicrobial peptides in 2014. Pharmaceuticals (Basel). 2015;8(1):123–50.
Article
CAS
Google Scholar
Peters BM, Shirtliff ME, Jabra-Rizk MA. Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog. 2010;6(10):e1001067.
Article
Google Scholar
Wang R, Brattain MG. The maximal size of protein to diffuse through the nuclear pore is larger than 60kDa. FEBS Lett. 2007;581(17):3164–70.
Article
CAS
Google Scholar
Kroemer JA, Webb BA. Divergences in protein activity and cellular localization within the Campoletis sonorensis Ichnovirus Vankyrin family. J Virol. 2006;80(24):12219–28.
Article
CAS
Google Scholar
Bindschedler LV, Whitelegge JP, Millar DJ, Bolwell GP. A two component chitin-binding protein from French bean -- association of a proline-rich protein with a cysteine-rich polypeptide. FEBS Lett. 2006;580(6):1541–6.
Article
CAS
Google Scholar
Krugel U, He HX, Gier K, Reins J, Chincinska I, Grimm B, Schulze WX, Kuhn C. The potato sucrose transporter StSUT1 interacts with a DRM-associated protein disulfide isomerase. Mol Plant. 2012;5(1):43–62.
Article
Google Scholar
Rubinovich L, Ruthstein S, Weiss D. The Arabidopsis cysteine-rich GASA5 is a redox-active metalloprotein that suppresses gibberellin responses. Mol Plant. 2014;7(1):244–7.
Article
CAS
Google Scholar
Bornhorst JA, Falke JJ. Purification of proteins using polyhistidine affinity tags. Methods Enzymol. 2000;326:245–54.
Article
CAS
Google Scholar
Dickson JM, Lee WJ, Shepherd PR, Buchanan CM. Enzyme activity effects of N-terminal his-tag attached to catalytic sub-unit of phosphoinositide-3-kinase. Biosci Rep. 2013;33(6):e00079.
Article
Google Scholar
Herbel V, Wink M. Mode of action and membrane specificity of the antimicrobial peptide snakin-2. PeerJ. 2016;4:e1987.
Article
Google Scholar
Maroniche GA, Mongelli VC, Alfonso V, Llauger G, Taboga O, del Vas M. Development of a novel set of gateway-compatible vectors for live imaging in insect cells. Insect Mol Biol. 2011;20(5):675–85.
Article
CAS
Google Scholar
Molinari P, Crespo MI, Gravisaco MJ, Taboga O, Moron G. Baculovirus capsid display potentiates OVA cytotoxic and innate immune responses. PLoS One. 2011;6(8):e24108.
Article
CAS
Google Scholar
O’Reilly D, Miller L, Luckow V. Baculovirus Expression Vectors: A Laboratory Manual. New York: Oxford University Press; 1994.