Kim HJ, Triplett BA. Cotton fiber growth in plant and in vitro: models for plant cell elongation and cell wall biogenesis. Plant Physiol. 2001;127(4):1361–6.
Article
CAS
Google Scholar
Ruan YL, Llewellyn DJ, Furbank RT. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell. 2003;15(4):952–64.
Article
CAS
Google Scholar
Li XB, Fan XP, Wang XL, Cai L, Yang WC. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell. 2005;17(3):859–75.
Article
CAS
Google Scholar
Zhang M, Zheng XL, Song SQ, Zeng QW, Hou L, Li DM, Zhao J, Wei Y, Li XB, Luo M, Xiao YH, Luo XY, Zhang JF, Xiang CB, Pei Y. Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat Biotechnol. 2011;29(5):453–8.
Article
CAS
Google Scholar
Xu B, Gou JY, Li FG, Shangguan XX, Zhao B, Yang CQ, Wang LJ, Yuan S, Liu CJ, Chen LY. A cotton BURP domain protein interacts with α-expansin and their co-expression promotes plant growth and fruit production. Mol Plant. 2013;6(3):945–58.
Article
CAS
Google Scholar
Han LB, Li YB, Wang HY, Wu XM, Li CL, Luo M, Wu SJ, Kong ZS, Pei Y, Jiao GL, Xia GX. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. Plant Cell. 2013;25(11):4421–38.
Article
CAS
Google Scholar
Schliwa M, Woehlke G. Molecular motors. Nature. 2003;422(6933):759–65.
Article
CAS
Google Scholar
Hirokawa N, Noda Y, Tanaka Y, Niwa S. Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol. 2009;10(10):682–96.
Article
CAS
Google Scholar
Verhey KJ, Meyer D, Deehan R, Blenis J, Schnapp BJ, Rapoport TA, Margolis B. Cargo of Kinesin identified as JIP scaffolding proteins and associated signaling molecules. J Cell Biol. 2001;152(5):959–70.
Article
CAS
Google Scholar
Sakai T, Honing HV, Nishioka M, Uehara Y, Takahashi M, Fujisawa N, Saiji K, Seki M, Shinozaki K, Jones MA, Smirnoff N, Okada K, Wasteneys GO. Armadillo repeat-containing Kinesins and a NIMA-related kinase are required for epidermal-cell morphogenesis in Arabidopsis. Plant J. 2008;53(1):151–71.
Article
Google Scholar
Vanstraelen M, Inze D, Geelen D. Mitosis-specific Kinesins in Arabidopsis. Trends Plant Sci. 2006;11(4):167–75.
Article
CAS
Google Scholar
Miki H, Okada Y, Hirokawa N. Analysis of the Kinesin superfamily: insights into structure and function. Trends Cell Biol. 2005;15(9):467–76.
Article
CAS
Google Scholar
Reddy AS, Day IS. Kinesins in the Arabidopis genome: a comparative analysis among eukaryotes. BMC Genomics. 2001;2(1):2.
Article
CAS
Google Scholar
Vale RD. The molecular motor toolbox for intracellular transport. Cell. 2003;112(4):467–80.
Article
CAS
Google Scholar
Richardson DN, Simmons MP, Reddy AS. Comprehensive comparative analysis of Kinesins in photosynthetic eukaryotes. BMC Genomics. 2006;7(1):18.
Article
Google Scholar
Preuss ML, Delmer DP, Liu B. The cotton Kinesin-like calmodulin-binding protein associates with cortical microtubules in cotton fibers. Plant Physiol. 2003;132(1):154–60.
Article
CAS
Google Scholar
Preuss ML, Kovar DR, Lee YR, Staiger CJ, Delmer DP, Liu B. A plant-specific Kinesin binds to actin microfilaments and interacts with cortial microtubules in cotton fibers. Plant Physiol. 2004;136(4):3945–55.
Article
CAS
Google Scholar
Xu T, Qu Z, Yang X, Qin X, Xiong J, Wang Y, Ren D, Liu G. A cotton Kinesin GhKCH2 interacts with both microtubules and microfilaments. Biochem J. 2009;421(2):171–80.
Article
CAS
Google Scholar
Lu L, Lee YR, Pan R, Maloof JN, Liu B. An internal motor Kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol Biol Cell. 2005;16(2):811–23.
Article
CAS
Google Scholar
Kitagawa K, Kurinami S, Oki K, Abe Y, Ando T, Kono I, Yano M, Kitano H, Iwasaki Y. A novel Kinesin 13 protein regulating rice seed length. Plant Cell Physiol. 2010;51(8):1315–29.
Article
CAS
Google Scholar
Wei L, Zhang W, Liu Z, Li Y. AtKinesin-13A is located on Golgi-associated vesicle and involved in vesicle formation/budding in Arabidopsis root-cap peripheral cells. BMC Plant Biol. 2009;9(1):138.
Article
Google Scholar
Zhao LJ, Xue F, Zhu SH, Li YJ, Liu YC, Sun J. Cloning and expression analysis of GhKinesin13 subfamily genes in Gossypium hirsutum. Acta Agron Sin. 2015;41(4):539–47 (in Chinese with English abstract).
Article
CAS
Google Scholar
Jiang JX, Zhang TZ. Extraction of total RNA in cotton tissues with CTAB-acidic phenolic method. Cotton Sci. 2003;15(3):166–7 (in Chinese with English abstract).
Google Scholar
Li XY, Wang HQ, Xu T, Cao QH, Ren DT, Liu GQ. Molecular cloning, expression and biochemical property analysis of AtPK1, a Kinesin gene from Arabidopsis thaliana. Chinese Sci Bull. 2007;52(10):1338–46.
Article
CAS
Google Scholar
LeBel D, Poirier GG, Beaudoin AR. A conveninent method for the ATPase Assay. Anal Biochem. 1978;85(1):86–9.
Article
CAS
Google Scholar
Wise AA, Liu Z, Binns AN. Three Methods for the Introduction of Foreign DNA into Agrobacterium. Methods Mol Biol. 2006;343:43–53.
CAS
Google Scholar
Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16(6):735–43.
Article
CAS
Google Scholar
Umeki N, Mitsui T, Umezu N, Kondo K, Maruta S. Preparation and characterization of a novel rice plant-specific Kinesin. J Biochem. 2006;139(4):645–54.
Article
CAS
Google Scholar
Matthies HJG, Baskin RJ, Hawley RS. Orphan Kinesin NOD lacks motile properties but does possess a microtubule-stimulated ATPase activity. Mol Biol Cell. 2001;12(12):4000–12.
Article
CAS
Google Scholar
Kuznetsov SA, Gelfand VI. Bovine brain Kinesin is a microtubule-activivated ATPase. Proc Natl Acad Sci U S A. 1986;83(22):8530–4.
Article
CAS
Google Scholar
Vale RD, Reese TS, Sheetz MP. Identification of a novel force-generating protein, Kinesin, involved in microtule-based motility. Cell. 1985;42(1):39–50.
Article
CAS
Google Scholar
Alonso MC, Drummond DR, Kain S, Hoeng J, Amos L, Cross RA. An ATP gate controls tubulin binding by the tethered head of Kinesin-1. Science. 2007;316(5821):120–3.
Article
CAS
Google Scholar
Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF. Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J. 2004;40(1):22–34.
Article
CAS
Google Scholar
Payne CT, Zhang F, Lloyd AM. GL3 encodes a bHLH protein that regulates trichome development in arabidopsis through interaction with GL1 and TTG1. Genetics. 2000;156(3):1349–62.
CAS
Google Scholar
Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development. 2003;130(20):4859–69.
Article
CAS
Google Scholar
Wada T, Tachibana T, Shimura Y, Okada K. Epidemal cell differentiation in Arabidopsis determined by a Myb homolog, CPC. Science. 1997;277(5329):1113–6.
Article
CAS
Google Scholar
Hulskamp M, Misra S, Jurgens G. Genetic dissection of trichome cell development in Arabidopsis. Cell. 1994;76(3):555–66.
Article
CAS
Google Scholar
Buschmann H, Hauptmann M, Niessing D, Lloyd CW, Schaffner AR. Helical growth of the Arabidopsis mutant tortifolia2 does not depend on cell division pattens but involves handed twisting of isolated cells. Plant Cell. 2009;21(7):2090–106.
Article
CAS
Google Scholar
Nakamura M, Hashimoto TA. Mutation in the Arabidopsis gamma-tubulin-containing complex causes helical growth and abnormal microtubule branching. J Cell Sci. 2009;122(Pt 13):2208–17.
Article
CAS
Google Scholar
Kong Z, Hotta T, Lee YR, Horio T, Liu B. The {gamma}-tubulin complex protein GCP4 is required for organizing functional microtubule arrays in Arabidopsis thaliana. Plant Cell. 2010;22(1):191–204.
Article
CAS
Google Scholar
Guan XY, Yu N, Shangguan XX, Wang S, Lu S, Wang LJ, Chen XY. Arabidopsis trichome research sheds light on cotton fiber development mechanisms. Chinese Sci Bull. 2007;52(13):1734–41.
Article
CAS
Google Scholar
Shangguan XX, Yang CQ, Zhang XF, Wang LJ. Functional characterization of a basic Helix-Loop-Helix (bHLH) transcription factor GhDEL65 from cotton (Gossypium hirsutum). Physiol Plant. 2016;158(2):200–12.
Article
CAS
Google Scholar
Guan X, Pang M, Nah G, Shi X, Ye W. miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nut Commun. 2014;5(1):3050.
Google Scholar
Wang S, Wang JW, Yu N, Li CH, Luo B, Gou JY, Wang LJ, Chen XY. Control of plant trichome development by a cotton fiber MYB gene. Plant Cell. 2004;16(9):2323–34.
Article
CAS
Google Scholar