Nakamura K, Go N. Function and molecular evolution of multicopper blue proteins. Cell Mol Life Sci. 2005;62:2050–66.
Article
CAS
Google Scholar
Levasseur A, Saloheimo M, Navarro D, Andberg M, Pontarotti P, Kruus K, et al. Exploring laccase-like multicopper oxidase genes from the ascomycete Trichoderma reesei: a functional, phylogenetic and evolutionary study. BMC Biochem. 2010;11:32.
Article
Google Scholar
Tamayo Ramos JA, Barends S, Verhaert RMD, de Graaff LH. The Aspergillus niger multicopper oxidase family: analysis and overexpression of laccase-like encoding genes. Microb Cell Fact. 2011;10:78.
Article
CAS
Google Scholar
Kues U, Liu Y. Fruiting body production in basidiomycetes. Appl Microbiol Biotechnol. 2000;54:141–52.
Article
CAS
Google Scholar
Zhu XD, Gibbons J, GarciaRivera J, Casadevall A, Williamson PR. Laccase of Cryptococcus neoformans is a cell wall- associated virulence factor. Infect Immun. 2001;69:5589–96.
Article
CAS
Google Scholar
Holker U, Dohse J, Hofer M. Extracellular laccases in ascomycetes Trichoderma atroviride and Trichoderma harzianum. Folia Microbiol Prague. 2002;47:423–7.
Article
CAS
Google Scholar
Kellner H, Luis P, Buscot F. Diversity of laccase-like multicopper oxidase genes in Morchellaceae: identification of genes potentially involved in extracellular activities related to plant litter decay. FEMS Microbiol Ecol. 2007;61:153–63.
Article
CAS
Google Scholar
Liers C, Arnstadt T, Ullrich R, Hofrichter M. Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood. FEMS Microbiol Ecol. 2011;78:91–102.
Article
CAS
Google Scholar
Abler SW. Ecology and Taxonomy of Leptosphaerulina spp. Associated with Turfgrasses in the United States. Thesis 2003. Faculty of the Virginia Polytechnic Institute and State University.
Rouxel T, Grandaubert J, Hane JK, Hoede C, van de Wouw AP, Couloux A, et al. Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations. Nat Commun. 2011;2:202.
Article
Google Scholar
Chanagá X, Escobar JP, Marín M, Yepes MS. Native fungi with industrial dye degrading potential in the Aburrá valley, Colombia. Revista Facultad Nacional de Agronomía Medellín. 2012;65(2):6811–21.
Google Scholar
Simon LT, Bishop DS, Hooper GR. Ultrastructure and Cytochemical-Localization of Laccase in 2 Strains of Leptosphaerulina-Briosiana (Pollaci) Graham and Luttrell. J Bacteriol. 1979;137:537–44.
CAS
Google Scholar
Sajben-Nagy E, Manczinger L, Škrbić B, Živančev J, Antić I, Krisch J, et al. Characterization of an extracellular laccase of Leptosphaerulina chartarum. World J Microbiol Biotechnol. 2014;30(9):2449–58.
Article
CAS
Google Scholar
Guillén F, Martínez AT, Martínez MJ. Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Eur J Biochem. 1992;209:603–11.
Article
Google Scholar
Stoscheck CM. Protein assay sensitive at nanogram levels. Anal Biochem. 1987;160:301–5.
Article
CAS
Google Scholar
Kall L, Canterbury JD, Weston J, Noble WS, MacCoss MJ. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods. 2007;4:923–5.
Article
Google Scholar
Cusano AM, Mekmouche Y, Meglecz E, Tron T. Plasticity of laccase generated by homeologous recombination in yeast. FEBS J. 2009;276:5471–80.
Article
CAS
Google Scholar
Maté D, García-Burgos C, García-Ruiz E, Ballesteros A, Camarero S, Alcalde M. Laboratory evolution of high redox potential laccases. Chem Biol. 2010;17:1030–41.
Article
Google Scholar
Camarero S, Pardo I, Cañas AI, Molina P, Record E, Martínez AT, et al. Engineering platforms for directed evolution of laccase from Pycnoporus cinnabarinus. Appl Environ Microbiol. 2012;78:1370–84.
Article
CAS
Google Scholar
Mate D, García-Ruiz E, Camarero S, Shubin V, Falk M, Shleev S, et al. Switching from blue to yellow: Altering the spectral properties of a high redox potential laccase by directed evolution. Biocatal Biotransform. 2013;31:8–21.
Article
CAS
Google Scholar
Ibarra D, Romero J, Martínez MJ, Martínez AT, Camarero S. Exploring the enzymatic parameters for optimal delignification of eucalypt pulp by laccase-mediator. Enzyme Microb Technol. 2006;39:1319–27.
Article
CAS
Google Scholar
Camarero S, Ibarra D, Martínez MJ, Martínez AT. Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol. 2005;71:1775–84.
Article
CAS
Google Scholar
Camarero S, Martínez MJ, Martínez AT. Understanding lignin biodegradation for the improved utilization of plant biomass in modern biorefineries. Biofuels Bioprod Biorefining. 2014;8(5):615–25.
Article
CAS
Google Scholar
Pardo I, Camarero S. Laccase engineering by rational and evolutionary design Cell. Mol Life Sci. 2015;72:897–910.
Article
CAS
Google Scholar
Hoegger PJ, Kilaru S, James TY, Thacker JR, Kües U. Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J. 2006;273:2308–26.
Article
CAS
Google Scholar
Kues U, Ruhl M. Multiple Multi-Copper Oxidase Gene Families in Basidiomycetes - What for? Curr Genomics. 2011;12:72–94.
Article
Google Scholar
Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, et al. The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes. Science. 2012;336(6089):1715–9.
Article
CAS
Google Scholar
Fan XZ, Zhou Y, Xiao Y, Xu ZY, Bian YB. Cloning, expression and phylogenetic analysis of a divergent laccase multigene family in Auricularia auricula-judae. Microbiol Res. 2014;169:453–62.
Article
CAS
Google Scholar
Stoj CS, Augustine AJ, Zeigler L, Solomon EI, Kosman DJ. Structural basis of the ferrous iron specificity of the yeast ferroxidase, Fet3p. Biochemistry. 2006;45:12741–9.
Article
CAS
Google Scholar
di Patti MCB, Pascarella S, Catalucci D. Calabrese L Homology modeling of the multicopper oxidase Fet3 gives new insights in the mechanism of iron transport in yeast. Protein Eng. 1999;12:895–7.
Article
Google Scholar
Larrondo LF, Salas L, Melo F, Vicuña R, Cullen D. A novel extracellular multicopper oxidase from Phanerochaete chrysosporium with ferroxidase activity. Appl Environ Microbiol. 2003;69:6257–63.
Article
CAS
Google Scholar
Piscitelli A, Giardina P, Lettera V, Pezzella C, Sannia G, Faraco V. Induction and Transcriptional Regulation of Laccases in Fungi. Curr Genomics. 2011;12:104–12.
Article
CAS
Google Scholar
Vanhulle S, Enaud E, Trovasle M, Nouaimeh N, Bols CM, Keshavarz T, et al. Overlap of laccases/cellobiose dehydrogenase activities during the decolourisation of anthraquinonic dyes with close chemical structures by Pycnoporus strains. Enzyme Microb Technol. 2007;40:1723–31.
Article
CAS
Google Scholar
Collins PJ, Dobson ADW. Regulation of laccase gene transcription in Trametes versicolor. Appl Environ Microbiol. 1997;63:3444–50.
CAS
Google Scholar
Alves AM, Record E, Lomascolo A, Scholtmeijer K, Asther M, Wessels JG, et al. Highly efficient production of laccase by the basidiomycete Pycnoporus cinnabarinus. Appl Environ Microbiol. 2004;70:6379–84.
Article
CAS
Google Scholar
Kim HI, Kwon OC, Kong WS, Lee CS, Park YJ. Genome-Wide Identification and Characterization of Novel Laccase Genes in the White-Rot Fungus Flammulina velutipes. Mycobiology. 2014;42(4):322–30.
Article
Google Scholar
Palmieri G, Bianco C, Cennamo G, Giardina P, Marino G, Monti M, et al. Purification, characterization, and functional role of a novel extracellular protease from Pleurotus ostreatus. Appl Environ Microbiol. 2001;67:2754–9.
Article
CAS
Google Scholar
Lee IY, Jung KH, Lee CH, Park YH. Enhanced production of laccase in Trametes vesicolor by the addition of ethanol. Biotechnol Lett. 1999;21:965–8.
Article
CAS
Google Scholar
van de Laar T, Visser C, Holster M, Lopez CG, Kreuning D, Sierkstra L, et al. Increased heterologous protein production by Saccharomyces cerevisiae growing on ethanol as sole carbon source. Biotechnol Bioeng. 2007;96:483–94.
Article
Google Scholar
Muñoz C, Guillén F, Martínez AT, Martínez MJ. Induction and characterization of laccase in the ligninolytic fungus Pleurotus eryngii. Curr Microbiol. 1997;34:1–5.
Article
Google Scholar
Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G. Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol. 2000;66:920–4.
Article
CAS
Google Scholar
da Cunha MA A, Barbosa AM, Giese EC, Dekker RFH. The effect of carbohydrate carbon sources on the production of constitutive and inducible laccases by Botryosphaeria sp. J Basic Microb. 2003;43:385–92.
Article
Google Scholar
Marbach I, Harel E, Mayer AM. Pectin, A 2Nd Inducer for Laccase Production by Botrytis-Cinerea. Phytochemistry. 1985;24:2559–61.
Article
CAS
Google Scholar
Lin SY, Okuda S, Ikeda K, Okuno T, Takano Y. LAC2 Encoding a Secreted Laccase Is Involved in Appressorial Melanization and Conidial Pigmentation in Colletotrichum orbiculare. Mol Plant Microbe Interact. 2012;25(12):1552–61.
Article
CAS
Google Scholar
Fang W, Fernandes EKK, Roberts DW, Bidochka MJ, St Leger RJ. A laccase exclusively expressed by Metarhizium anisopliae during isotropic growth is involved in pigmentation, tolerance to abiotic stresses and virulence. Fungal Genet Biol. 2010;47:602–7.
Article
CAS
Google Scholar
Nishida H, Nagatsuka Y, Sugiyama J. Draft genome sequencing of the enigmatic basidiomycete Mixia osmundae. J Gen Appl Microbiol. 2011;57:63–7.
Article
CAS
Google Scholar
Stoj C, Kosman DJ. Cuprous oxidase activity of yeast Fet3p and human ceruloplasmin: implication for function. FEBS Lett. 2003;554:422–6.
Article
CAS
Google Scholar
Goswami P, Chinnadayyala SS, Chakraborty M, Kumar AK, Kakoti A. An overview on alcohol oxidases and their potential applications. Appl Microbiol Biotechnol. 2013;97:4259–75.
Article
CAS
Google Scholar
Hansel CM, Zeiner CA, Santelli CM, Webb SM. Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction. Proc Natl Acad Sci U S A. 2012;109:12621–5.
Article
CAS
Google Scholar
Tanabe S, Ishii-Minami N, Saitoh KI, Otake Y, Kaku H, Shibuya N, et al. The role of catalase–peroxidase secreted by Magnaporthe oryzae during early infection of rice cells. Mol Plant-Microbe Interact. 2011;24:163–71.
Article
CAS
Google Scholar