Srianta I, Ristiarini S, Nugerahani I, Sen SK, Zhang BB, Xu GR, et al. Recent research and development of Monascus fermentation products. Int Food Res J. 2014;1:1–12.
Google Scholar
Wang JX, Lu ZL, Chi JM, Wang WH, Su MZ, Kou WR, et al. Multi-center clinical trial of the serum lipid lowering effects of a Monascus Purpureus (Red Yeast) rice preparation from Traditional Chinese Medicine. Curr Ther Res. 1997;58(12):964–78.
Article
Google Scholar
Lin YL, Wang TH, Lee MH, Su NW. Biologically active components and nutraceuticals in the Monascus-fermented rice: a review. Appl Microbiol Biotechnol. 2008;77:965–73.
Article
CAS
Google Scholar
Feng Y, Shao Y, Chen F. Monascus pigments. Appl Microbiol Biotechnol. 2012;96:1421–40.
Article
CAS
Google Scholar
Hsu LC, Hsu YW, Liang YH, Kuo YH, Pan TM. Anti-tumor and anti-inflammatory properties of ankaflavin and monaphilone A from Monascus purpureus NTU 568. J Agric Food Chem. 2011;59:1124–30.
Article
CAS
Google Scholar
Shi YC, Liao VHC, Pan TM. Monascin from red mold dioscorea as a novel antidiabetic and antioxidative stress agent in rats and Caenorhabditis elegans. Free Radic Biol Med. 2012;52:109–17.
Article
CAS
Google Scholar
Hsu WH, Lee BH, Liao TH, Hsu YW, Pan TM. Monascus-fermented metabolite monascin suppresses inflammation via PPAR-γ regulation and JNK inactivation in THP-1 monocytes. Food Chem Toxicol. 2012;50:1178–86.
Article
CAS
Google Scholar
Hsu LC, Liang YH, Hsu YW, Kuo YH, Pan TM. Anti-inflammatory properties of yellow and orange pigments from Monascus purpureus NTU 568. J Agric Food Chem. 2013;61:2796–802.
Article
CAS
Google Scholar
Lee CL, Wen JY, Hsu YW, Pan TM. Monascus-fermented yellow pigments monascin and ankaflavin showed antiobesity effect via the suppression of differentiation and lipogenesis in obese rats fed a high-fat diet. J Agric Food Chem. 2013;61:1493–500.
Article
CAS
Google Scholar
Zheng Y, Xin Y, Shi X, Guo Y. Anti-cancer effect of rubropunctatin against human gastric carcinoma cells BGC-823. Appl Microbiol Biotechnol. 2010;88:1169–77.
Article
CAS
Google Scholar
Kang B, Zhang X, Wu Z, Wang Z, Prak S. Production of citrinin-free Monascus pigments by submerged culture at low pH. Enzyme Microb Technol. 2014;55:50–7.
Article
CAS
Google Scholar
Zhang L, Li Z, Dai B, Zhang W, Yuan Y. Effect of submerged and solid-state fermentation on pigment and citrinin production by Monascus purpureus. Acta Biol Hung. 2013;64:385–94.
Article
CAS
Google Scholar
Patakova P. Monascus secondary metabolites: production and biological activity. J Ind Microbiol Biotechnol. 2013;40:169–81.
Article
CAS
Google Scholar
Hajjaj H, Francois JM, Goma G, Blanc PJ. Effect of amino acids on red pigments and citrinin production in Monascus ruber. J Food Sci. 2012;77:156–9.
Article
Google Scholar
Subhasree RS, Babu PD, Vidyalakshmi R, Mohan VC. Effect of carbon and nitrogen sources on stimulation of pigment production by Monascus purpureus on jackfruit seeds. Intl J Microbiol Res. 2011;2:184–7.
Google Scholar
Zhang X, Wang J, Chen M, Wang C. Effect of nitrogen sources on production and photostability of Monascus pigments in liquid fermentation. Procedia IERI. 2013;5:344–50.
Article
Google Scholar
Babitha S, Soccol CR, Pandey A. Effect of stress on growth, pigment production and morphology of Monascus sp. in solid cultures. J Basic Microbiol. 2007;47:118–26.
Article
CAS
Google Scholar
Pereira DG, Tonso A, Kilikian BV. Effect of dissolved oxygen concentration on red pigment and citrinin production by Monascus purpureus ATCC 36928. Braz J Chem Eng. 2008;25:247–53.
Article
CAS
Google Scholar
Tudor D, Robinson SC, Cooper PA. The influence of pH on pigment formation by lignicolous fungi. Int Biodeterior Biodegrad. 2013;80:22–8.
Article
CAS
Google Scholar
Lee J, Lee SY, Park S, Middelberg APJ. Control of fed-batch fermentations. Biotechnol Adv. 1999;17:29–48.
Article
CAS
Google Scholar
Willie Sun WQ, Joseph Pursell E. High-cell density fed-batch fermentation process for producing recombinant protein. United State Patent. Pub.No.: US 2014/0113329 A1.
Krairak S, Yamamura K, Irie R, Nakajima M, Shimizu H, Anage PC, et al. Maximizing yellow pigment production in fed-batch culture of Monascus sp. J Biosci Bioeng. 2000;90:363–7.
Article
CAS
Google Scholar
Laurence Santerre A, Queinnec I, Blanc PJ. A fedbatch strategy for optimal red pigment production by Monascus ruber. Bioprocess Eng. 1995;13:245–50.
Article
Google Scholar
Hu Z, Zhang X, Wu Z, Qi H, Wang Z. Export of intracellular Monascus pigments by two-stage microbial fermentation in nonionic surfactant micelle aqueous solution. J Biotechnol. 2012;162:202–9.
Article
CAS
Google Scholar
Zheng Y, Xin Y, Guo Y. Study on the fingerprint profile of Monascus products with HPLC-FD. PAD and MS. Food Chem. 2009;113:705–11.
Article
CAS
Google Scholar
Hajjaj H, Blanc P, Groussac E, Uribelarrea JL, Goma G, Loubiere P. Kinetic analysis of red pigment and citrinin production by Monascus ruber as a function of organic acid accumulation. Enzyme Microb Technol. 2000;27:619–25.
Article
CAS
Google Scholar
Espeso EA, Tilburn J, Arst HN, Penalva MA. pH regulation is a major determinant in expression of a fungal penicillin biosynthetic gene. EMBO J. 1993;12:3947–56.
CAS
Google Scholar
Denison SH. pH Regulation of Gene Expression in Fungi. Fungal Genet Biol. 2000;29:61–71.
Article
CAS
Google Scholar
Keller NP, Nesbitt C, Sarr B, Phillips TD, Burow GB. pH Regulation of Sterigmato- cystin and Aflatoxin Biosynthesis in Aspergillus spp. Phytopathology. 1997;87:643–8.
Article
CAS
Google Scholar
Lin TF. Studies on the formation of Monascus red pigments, Ph. D. Thesis. Cambridge, MA: Massachusetts Institute of Technology; 1991.
Google Scholar
Demain AL. Regulatory mechanisms and industrial production of microbial metabolites. Lloydia. 1968;31:395–418.
CAS
Google Scholar
Foster JW, Wanksman SA. The specific effect of zinc and other heavy metals on growth and fumaric-acid production by Rhizopus. J Bacteriol. 1939;37:599–617.
CAS
Google Scholar
Cane DE. Enzyme-level studies of the biosynthesis of natural products. In: Suckling CJ, editor. Enzyme Chemistry. Berlin: Springer Netherlands; 1984. p. 196–231.
Chapter
Google Scholar
Lin TF, Demain AL. Effect of nutrition of Monascus sp. on formation of red pigments. Appl Microbiol Biotechnol. 1991;36:70–5.
Article
CAS
Google Scholar
Lin TF, Demain AL. Resting cell studies on formation of water-soluble red pigments by Monascus sp. J Ind Microbiol. 1993;12:361–7.
Article
CAS
Google Scholar
Carels M, Shepherd D. The effect of different nitrogen sources on pigment production and sporulation of Monascus species in submerged, shaken culture. Can J Microbiol. 1977;23:1360–72.
Article
CAS
Google Scholar
Hajjaj H, Klaebe A, Goma G, Blanc PJ, Barbier E, Francois J. Medium-chain fatty acids affect citrinin production in the filamentous fungus Monascus ruber. Appl Environ Microbiol. 2000;66:1120–5.
Article
CAS
Google Scholar
Kurono M, Nakanishi K, Shido K, Tada M. Biosyntheses of monascorubrin and monascoflavin. Chem Pharm Bull. 1963;11:359–62.
Article
CAS
Google Scholar
Haws EJ, Holker JSE, Kelly A, Powell ADG, Robertson A. The chemistry of fungi. Part XXXVII. The structure of rubropunctatin. J Chem Soc. 1959;722:3598–610.
Article
Google Scholar
Nakanishi K, Ohashi M, Kumasaki SI, Yamamura S. Monascorubrin. II. structures of monascorubrin and monascamine. J Am Chem Soc. 1959;8123:6339–40.
Article
Google Scholar
Shi K, Song D, Chen G, Pistolozzi M, Wu Z, Quan L. Controlling composition and color characteristics of Monascus pigments by pH and nitrogen sources in submerged fermentation. J Biosc Bioeng. 2015;120(2):145–54.
Article
CAS
Google Scholar
Qu J, Wang B, Wu J, Xu C, Zhu S, Chen F. Study on separation of Monascus pigments and their antioxidative properties. Mod Food Sci Technol. 2008;24:527–31.
CAS
Google Scholar