Kates M: Archaebacterial lipids: structure, biosynthesis and function. The Archaebacteria: Biochemistry and Biotechnology. Edited by: Danson MJ, Hough DW, Lunt GG. 1992, London: Portland Press and Chapel Hill, 58: 51-77.
Google Scholar
Sprott GD, Tolson DL, Patel GB: Archaeosomes as novel antigen delivery systems. FEMS Microbiol Lett. 1997, 154: 17-22.
Article
CAS
Google Scholar
Kates M: Biology of halophilic bacteria, Part II. Membrane lipids of extreme halophiles: biosynthesis, function and evolutionary significance. Experientia. 1993, 49: 1027-1036. 10.1007/BF01929909.
Article
CAS
Google Scholar
Sprott GD, CJ D, LP F, GB P: Stability of liposomes prepared from archaeobacterial lipids and phosphatidylcholine mixtures. Cells Mater. 1996, 6: 143-155.
CAS
Google Scholar
Kitano T, Onoue T, Yamauchi K: Archaeal lipids forming a low energy-surface on air-water interface. Chem Phys Lipids. 2003, 126: 225-232. 10.1016/j.chemphyslip.2003.08.006.
Article
CAS
Google Scholar
Yamauchi K, Onoue Y, Tsujimoto T, Kinoshita M: Archaebacterial lipids: high surface activity of polyisoprenoid surfactants in water. Colloids and Surfaces B: Biointerfaces. 1997, 10: 35-39. 10.1016/S0927-7765(97)00040-4.
Article
CAS
Google Scholar
Mathai JC, Sprott GD, Zeidel ML: Molecular mechanisms of water and solute transport across archaebacterial lipid membranes. J Biol Chem. 2001, 276: 27266-27271. 10.1074/jbc.M103265200.
Article
CAS
Google Scholar
Vossenberg van de JL, Driessen AJ, Grant WD, Konings WN: Lipid membranes from halophilic and alkali-halophilic Archaea have a low H+ and Na+ permeability at high salt concentration. Extremophiles. 1999, 3: 253-257. 10.1007/s007920050124.
Article
Google Scholar
Eckburg PB, Lepp PW, Relman DA: Archaea and their potential role in human disease. Infection and Immunity. 2003, 71: 591-596. 10.1128/IAI.71.2.591-596.2003.
Article
CAS
Google Scholar
Brennan FR, Dougan G: Non-clinical safety evaluation of novel vaccines and adjuvants: new products, new strategies. Vaccine. 2005, 23: 3210-3222. 10.1016/j.vaccine.2004.11.072.
Article
CAS
Google Scholar
Lofthouse S: Immunological aspects of controlled antigen delivery. Adv Drug Deliv Rev. 2002, 54: 863-870. 10.1016/S0169-409X(02)00073-X.
Article
CAS
Google Scholar
Patel GB, Omri A, Deschatelets L, Sprott GD: Safety of archaeosome adjuvants evaluated in a mouse model. J Liposome Res. 2002, 12: 353-372. 10.1081/LPR-120016712.
Article
CAS
Google Scholar
Omri A, Agnew BJ, Patel GB: Short-term repeated-dose toxicity profile of archaeosomes administered to mice via intravenous and oral routes. Int J Toxicol. 2003, 22: 9-23. 10.1080/10915810305080.
Article
CAS
Google Scholar
Friede M, Aguado MT: Need for new vaccine formulations and potential of particulate antigen and DNA delivery systems. Adv Drug Deliv Rev. 2005, 57: 325-331. 10.1016/j.addr.2004.10.001.
Article
CAS
Google Scholar
Lizama C, Monteoliva-Sanchez M, Suarez-Garcia A, Rosello-Mora R, Aguilera M, Campos V, Ramos-Cormenzana A: Halorubrum tebenquichense sp. nov., a novel halophilic archaeon isolated from the Atacama Saltern, Chile. Int J Syst Evol Microbiol. 2002, 52: 149-155.
Article
CAS
Google Scholar
Stackebrandt E, Goebel BM: Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol. 1994, 44: 846-849.
Article
CAS
Google Scholar
Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG: Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol. 1987, 37: 463-464.
Article
Google Scholar
Berg DE, Akopyants NS, Kersulyte D: Fingerprinting microbial genomes using the RAPD or AP-PCR. Methods Mol Cell Biol. 1994, 5: 13-24.
CAS
Google Scholar
Lopalco P, S L, Babudri FA, Corcelli A: Osmotic shock stimulates de novo synthesis of two cardiolipins in an extreme halophilic archaeon. J Lipid Res. 2004, 45: 194-201. 10.1194/jlr.M300329-JLR200.
Article
CAS
Google Scholar
Daleke DL, Hong K, Papahadjopoulos D: Endocytosis of liposomes by macrophages: binding, acidification and leakage of liposomes monitored by a new fluorescence assay. Biochim Biophys Acta. 1990, 1024: 352-366. 10.1016/0005-2736(90)90365-U.
Article
CAS
Google Scholar
Straubinger RM, Papahadjopoulos D, Hong K: Endocytosis and intracellular fate of liposomes using pyranine as a probe. Biochemistry. 1990, 29: 4929-4939. 10.1021/bi00472a025.
Article
CAS
Google Scholar
Oren A, Ventosa A: A proposal for the transfer of Halorubrobacterium distributum and Halorubrobacterium coriense to the genus Halorubrum as Halorubrum distributum comb. nov. and Halorubrum coriense comb. nov., respectively. Int J Syst Bacteriol. 1996, 46: 1180-
Article
Google Scholar
Kharroub K, Quesada T, Ferrer R, Fuentes S, Aguilera M, Boulahrouf A, Ramos-Cormenzana A, Monteoliva-Sanchez M: Halorubrum ezzemoulense sp. nov., a halophilic archaeon isolated from Ezzemoul sabkha, Algeria. Int J Syst Evol Microbiol. 2006, 56: 583-588. 10.1099/ijs.0.64087-0.
Article
Google Scholar
Kamekura M, Dyall-Smith ML, Upasani V, Ventosa A, Kates M: Diversity of alkaliphilic halobacteria: proposals for transfer of Natronobacterium vacuolatum, Natronobacterium magadii, and Natronobacterium pharaonis to Halorubrum, Natrialba, and Natronomonas gen. nov., respectively, as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov., and Natronomonas pharaonis comb. nov., respectively. Int J Syst Bacteriol. 1997, 47: 853-857.
Article
CAS
Google Scholar
McGenity TJ, Grant WD: Transfer of Halobacterium trapanicum NRC 34021 and Halobacterium gen nov, or Halorubrum saccharorubrum comb. nov, and Halorubrum sodomense com. Nov. Halorubrum trapanicum comb nov, and Halorubrum lacusprofundi comb nov and Halorubrum lacusprofundi comb nov. Syst Appl Microbiol. 1995, 18: 237-243.
Article
Google Scholar
Kamekura M, Seno Y, Dyall-Smith M: Halolysin R4, a serine proteinase from the halophilic archaeon Haloferax mediterranei; gene cloning, expression and structural studies. Biochim Biophys Acta. 1996, 1294: 159-167.
Article
Google Scholar
Franzmann PD: Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica. Syst Appl Microbiol. 1988, 11: 20-27.
Article
CAS
Google Scholar
Tomlinson GA, Hochstein LI: Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol. 1976, 22: 587-591.
Article
CAS
Google Scholar
Fan H, Xue Y, Ma Y, Ventosa A, Grant WD: Halorubrum tibetense sp. nov., a novel haloalkaliphilic archaeon from Lake Zabuye in Tibet, China. Int J Syst Evol Microbiol. 2004, 54: 1213-1216. 10.1099/ijs.0.03032-0.
Article
CAS
Google Scholar
Kamekura M, Kates M: Structural diversity of membrane lipids in members of Halobacteriaceae. Biosci Biotechnol Biochem. 1999, 63: 969-972. 10.1271/bbb.63.969.
Article
CAS
Google Scholar
Kates M, Moldoveanu N, Stewart LC: On the revised structure of the major phospholipid of Halobacterium salinarium. Biochim Biophys Acta. 1993, 1169: 46-53.
Article
CAS
Google Scholar
Kates M: Membrane lipids of archaea. The biochemistry of Archaea (Archaebacteria). Edited by: Kates M, Kushner DJ, Mathenson AT. 1993, Amsterdam: Elsevier, 261-295.
Chapter
Google Scholar
Kates M: Structural analysis of phospholipids and glycolipids in extremely halophilic archaebacteria. J Microbiol Methods. 1996, 25: 113-128. 10.1016/0167-7012(96)00010-3.
Article
CAS
Google Scholar
Noguchi Y, Hayashi A, Tsujimoto K, Miyabayashi K, Mizukami T, Naito Y, Ohashi M: Composition Analysis of Polar Lipids in Halobacteria with Mass Spectrometry. J Mass Spectrm Soc Jpn. 2004, 52: 307-316.
Article
CAS
Google Scholar
Corcelli A, Lobasso S: Characterization of lipids of halophilic Archaea. Methods in Microbiology - Extremophiles. Edited by: Oren AFRaA. 2006, Amsterdam: Elsevier, 585-613.
Google Scholar
Corcelli A, Lattanzio VM, Mascolo G, Bardudri F, Oren A, Kates M: Novel Sulfonolipid in the Extremely Halophilic Bacterium Salinibacter rubber. Appl Environ Microbiol. 2004, 70: 6678-6685. 10.1128/AEM.70.11.6678-6685.2004.
Article
CAS
Google Scholar
Tolson DL, Latta RK, Patel GB, Sprott GD: Uptake of archaeobacterial liposomes by phagocytic cells. J Liposome Res. 1996, 6: 755-776. 10.3109/08982109609039925.
Article
CAS
Google Scholar
Krishnan L, Sad S, Patel GB, Sprott GD: The potent adjuvant activity of archaeosomes correlates to the recruitment and activation of macrophages and dendritic cells in vivo. J Immunol. 2001, 166: 1885-1893.
Article
CAS
Google Scholar
Krishnan L, Sad S, Patel GB, Sprott GD: Archaeosomes induce long-term CD8+ cytotoxic T cell respponse to entrapped soluble protein by the exogenous cytosolic pathway, in the absence of CD4+ T cell help. The Journal of Immunology. 2000, 165: 5177-5185.
Article
CAS
Google Scholar
Krishnan L, Sprott GD: Archaeosome adjuvants: Immunological capabilities and mechanism (s) of action. Vaccine. 2008, 26: 2043-2055. 10.1016/j.vaccine.2008.02.026.
Article
CAS
Google Scholar
Dudani R, Chapdelaine Y, van Faassen H, Smith DK, Shen H, Krishnan L, Sad S: Preexisting inflammation due to Mycobacterium bovis BCG infection differentially modulates T-cell priming against a replicating or nonreplicating immunogen. Infect Immun. 2002, 70: 1957-1964. 10.1128/IAI.70.4.1957-1964.2002.
Article
CAS
Google Scholar
Sprott GD, Dicaire CJ, Gurnani K, Deschatelets LA, Krishnan L: Liposome adjuvants prepared from the total polar lipids of Haloferax volcanii, Planococcus spp. and Bacillus firmus differ in ability to elicit and sustain immune responses. Vaccine. 2004, 22: 2154-2162. 10.1016/j.vaccine.2003.11.054.
Article
CAS
Google Scholar
Krishnan L, Dicaire CJ, Patel GB, Sprott GD: Archaeosome vaccine adjuvants induce strong humoral, cell-mediated, and memory responses: comparison to conventional liposomes and alum. Infect Immun. 2000, 68: 54-63. 10.1128/IAI.68.1.54-63.2000.
Article
CAS
Google Scholar
Krishnan L, Sprott GD: Archaeosomes as self adjuvanting delivery systems for cancer vaccines. J Drug Target. 2003, 11: 515-524. 10.1080/10611860410001670044.
Article
CAS
Google Scholar
Sprott GD, Dicaire CJ, Côté JP, Whitfield DM: Adjuvant potential of archaeal synthetic glycolipid mimetics critically depends on the glyco head group structure. Glycobiology. 2008, 18: 559-565. 10.1093/glycob/cwn038.
Article
CAS
Google Scholar
Whitfield DM, Eichler EV, Sprott GD: Synthesis of archaeal glycolipid adjuvants - what is the optimum number of sugars?. Carbohydrate Research. 2008, 343: 2349-2360. 10.1016/j.carres.2008.06.021.
Article
CAS
Google Scholar
Sprott GD, Côté JP, Jarrell HC: Glycosidase-induced fusion of isoprenoid gentiobiosyl lipid membranes at acidic pH. Glycobiology. 2009, 19: 267-276. 10.1093/glycob/cwn129.
Article
CAS
Google Scholar
Ihara K, Watanabe S, Tamura T: Haloarcula argentinensis sp. nov. and Haloarcula mukohataei sp. nov., two new extremely halophilic archaea collected in Argentina. Int J Syst Bacteriol. 1997, 47: 73-77.
Article
CAS
Google Scholar
Oren A, Ventosa A, Grant WD: Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol. 1997, 47: 233-238.
Article
Google Scholar
Dussault HP: An improved technique for staining red halophilic bacteria. J Bacteriol. 1955, 70: 484-485.
CAS
Google Scholar
Cashion P, Hodler-Franklin MA, McCully J, Franklin M: A rapid method for base ratio determination of bacterial DNA. Anal Biochem. 1977, 81: 461-466. 10.1016/0003-2697(77)90720-5.
Article
CAS
Google Scholar
Marmur J, Doty P: Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962, 5: 109-118. 10.1016/S0022-2836(62)80066-7.
Article
CAS
Google Scholar
Ferragut C, Leclerc H: A comparative study of different methods of determining the Tm of bacterial DNA. Ann Microbiol (Paris). 1976, 127A: 223-235.
CAS
Google Scholar
Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977, 74: 5463-5467. 10.1073/pnas.74.12.5463.
Article
CAS
Google Scholar
Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22: 4673-4680. 10.1093/nar/22.22.4673.
Article
CAS
Google Scholar
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25: 4876-4882. 10.1093/nar/25.24.4876.
Article
CAS
Google Scholar
Felsenstein J: Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985, 39: 783-791. 10.2307/2408678.
Article
Google Scholar
De Ley J, Cattoir H, Reynaerts A: The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem. 1970, 12: 133-142. 10.1111/j.1432-1033.1970.tb00830.x.
Article
CAS
Google Scholar
Huss VAR, Festl H, Schleifer KH: Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol. 1983, 4: 184-192.
Article
CAS
Google Scholar
Kates MKS: Protocol 5: Isoprenoids and polar lipids of extreme halophiles. Archaea. A laboratory manual. Halophiles. Edited by: DSaF EM. 1995, New York: Cold Spring Harbor Laboratory Press, 35-53.
Google Scholar
Bötcher CJF, van Gent CM, Pries C: A rapid and sensitive sub-micro phosphorus determination. Anal Chim Acta. 1961, 24: 203-204. 10.1016/0003-2670(61)80041-X.
Article
Google Scholar
Stewart JC: Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem. 1980, 104: 10-14. 10.1016/0003-2697(80)90269-9.
Article
CAS
Google Scholar
Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3.
Article
CAS
Google Scholar
Jost LM, Kirkwood JM, Whiteside TL: Improved short- and long-term XTT-based colorimetric cellular cytotoxicity assay for melanoma and other tumor cells. J Immunol Methods. 1992, 147: 153-165.
Article
CAS
Google Scholar