Kendall SL, Withers M, Soffair CN, Moreland NJ, Gurcha S, Sidders B, et al. A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis: transcriptional repressor controlling a large lipid metabolism regulon in mycobacteria. Mol Microbiol. 2007;65:684–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kendall SL, Burgess P, Balhana R, Withers M, ten Bokum A, Lott JS, et al. Cholesterol utilization in mycobacteria is controlled by two TetR-type transcriptional regulators: kstR and kstR2. Microbiology. 2010;156:1362–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uhía I, Galan B, Medrano FJ, Garcia JL. Characterization of the KstR-dependent promoter of the gene for the first step of the cholesterol degradative pathway in Mycobacterium smegmatis. Microbiology. 2011;157:2670–80.
Article
PubMed
CAS
Google Scholar
Uhía I, Galán B, Kendall SL, Stoker NG, García JL. Cholesterol metabolism in Mycobacterium smegmatis: cholesterol pathway. Environ Microbiol Rep. 2012;4:168–82.
Article
PubMed
CAS
Google Scholar
Griffin JE, Gawronski JD, Dejesus MA, Ioerger TR, Akerley BJ, Sassetti CM. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Plos Pathog. 2011;7:e1002251.
Article
CAS
PubMed
PubMed Central
Google Scholar
van der Geize R, Yam K, Heuser T, Wilbrink MH, Hara H, Anderton MC, et al. A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci U S A. 2007;104:1947–52.
Article
PubMed
PubMed Central
CAS
Google Scholar
McLeod MP, Warren RL, Hsiao WWL, Araki N, Myhre M, Fernandes C, et al. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci U S A. 2006;103:15582–7.
Article
PubMed
PubMed Central
Google Scholar
Drzyzga O, Fernández de las Heras L, Morales V, Navarro Llorens JM, Perera J. Cholesterol degradation by Gordonia cholesterolivorans. Appl Environ Microbiol. 2011;77:4802–10.
Ivashina TV, Nikolayeva VM, Dovbnya DV, Donova MV. Cholesterol oxidase ChoD is not a critical enzyme accounting for oxidation of sterols to 3-keto-4-ene steroids in fast-growing Mycobacterium sp. VKM ac-1815D. J Steroid Biochem Mol Biol. 2012;129:47–53.
Article
CAS
PubMed
Google Scholar
Capyk JK, Kalscheuer R, Stewart GR, Liu J, Kwon H, Zhao R, et al. Mycobacterial cytochrome P450 125 (Cyp125) catalyzes the terminal hydroxylation of C27 steroids. J Biol Chem. 2009;284:35534–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnston JB, Ouellet H, Ortiz de Montellano PR, et al. J Biol Chem. 2010;285:36352–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilbrink MH, van der Geize R, Dijkhuizen L. Molecular characterization of ltp3 and ltp4, essential for C24-branched chain sterol-side-chain degradation in Rhodococcus rhodochrous DSM 43269. Microbiology. 2012;158(Pt_12):3054–62.
Article
CAS
PubMed
Google Scholar
Casabon I, Swain K, Crowe AM, Eltis LD, Mohn WW. Actinobacterial acyl coenzyme a synthetases involved in steroid side-chain catabolism. J Bacteriol. 2014;196:579–87.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nesbitt NM, Yang X, Fontán P, Kolesnikova I, Smith I, Sampson NS, et al. A thiolase of Mycobacterium tuberculosis is required for virulence and production of androstenedione and androstadienedione from cholesterol. Infect Immun. 2010;78:275–82.
Article
CAS
PubMed
Google Scholar
Capyk JK, Casabon I, Gruninger R, Strynadka NC, Eltis LD. Activity of 3-ketosteroid 9α-hydroxylase (KshAB) indicates cholesterol side chain and ring degradation occur simultaneously in Mycobacterium tuberculosis. J Biol Chem. 2011;286:40717–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bragin EY, Shtratnikova VY, Schelkunov MI, Dovbnya DV, Donova MV. Genome-wide response on phytosterol in 9-hydroxyandrostenedione-producing strain of Mycobacterium sp. VKM ac-1817D. BMC Biotechnol. 2019;19:39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carere J, McKenna SE, Kimber MS, Seah SYK. Characterization of an aldolase-dehydrogenase complex from the cholesterol degradation pathway of Mycobacterium tuberculosis. Biochemistry. 2013;52:3502–11.
Article
CAS
PubMed
Google Scholar
Dresen C, Lin LY-C, D’Angelo I, Tocheva EI, Strynadka N, Eltis LD. A flavin-dependent monooxygenase from Mycobacterium tuberculosis involved in cholesterol catabolism. J Biol Chem. 2010;285:22264–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lack NA, Yam KC, Lowe ED, Horsman GP, Owen RL, Sim E, et al. Characterization of a carbon-carbon hydrolase from Mycobacterium tuberculosis involved in cholesterol metabolism. J Biol Chem. 2010;285:434–43.
Article
CAS
PubMed
Google Scholar
Crowe AM, Casabon I, Brown KL, Liu J, Lian J, Rogalski JC, et al. Catabolism of the last two steroid rings in Mycobacterium tuberculosis and other bacteria. mBio. 2017;8. https://doi.org/10.1128/mBio.00321-17.
Nagasawa M, Bae M, Tamura G, Arima K. Microbial transformation of sterols. Part II: cleavage of sterol side chains by microorganisms. Agric Biol Chem. 1969;33:1644–50.
Article
CAS
Google Scholar
Choi K-P, Murooka Y, Molnár I. Secretory overproduction of Arthrobacter simplex 3-ketosteroid-delta-1-dehydrogenase by Streptomyces lividans with a multi-copy shuttle vector. Appl Microbiol Biotechnol. 1995;43:1044–9.
Article
CAS
PubMed
Google Scholar
Zhang H, Tian Y, Wang J, Li Y, Wang H, Mao S, et al. Construction of engineered Arthrobacter simplex with improved performance for cortisone acetate biotransformation. Appl Microbiol Biotechnol. 2013;97:9503–14.
Article
CAS
PubMed
Google Scholar
Holert J, Cardenas E, Bergstrand LH, Zaikova E, Hahn AS, Hallam SJ, et al. Metagenomes reveal global distribution of bacterial steroid catabolism in natural, engineered, and host environments. mBio. 2018;9:e02345–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwak MJ, Kwon SK, Kim JF. Complete genome sequence of the sand-sediment actinobacterium Nocardioides dokdonensis FR1436T. Stand Genomic Sci. 2017;12. https://doi.org/10.1186/s40793-017-0257-z.
Shtratnikova VY, Schelkunov MI, Pekov YA, Fokina VV, Logacheva MD, Sokolov SL, et al. Complete genome sequence of steroid-transforming Nocardioides simplex VKM Ac-2033D. Genome Announc. 2015;3:e01406–14.
Shtratnikova VY, Schelkunov MI, Fokina VV, Pekov YA, Ivashina T, Donova MV. Genome-wide bioinformatics analysis of steroid metabolism-associated genes in Nocardioides simplex VKM Ac-2033D. Curr Genet. 2016;62:643–56.
Shtratnikova VY, Schelkunov MI, Fokina VV, Bragin EY, Lobastova TG, Shutov AA, et al. Genome-wide transcriptome profiling provides insight on cholesterol and lithocholate degradation mechanisms in Nocardioides simplex VKM Ac-2033D. Genes. 2020;11:1229.
Qin H-M, Wang J-W, Guo Q, Li S, Xu P, Zhu Z, et al. Refolding of a novel cholesterol oxidase from Pimelobacter simplex reveals dehydrogenation activity. Protein Expr Purif. 2017;139:1–7.
Article
CAS
PubMed
Google Scholar
Qin H-M, Zhu Z, Ma Z, Xu P, Guo Q, Li S, et al. Rational design of cholesterol oxidase for efficient bioresolution of cholestane skeleton substrates. Sci Rep. 2017;7. https://doi.org/10.1038/s41598-017-16768-6.
Fokina VV, Sukhodolskaya GV, Baskunov BP, Turchin KF, Grinenko GS, Donova MV. Microbial conversion of pregna-4,9(11)-diene-17α,21-diol-3,20-dione acetates by Nocardioides simplex VKM Ac-2033D. Steroids. 2003;68:415–21.
Fokina VV, Donova MV. 21-Acetoxy-pregna-4(5),9(11),16(17)-triene-21-ol-3,20-dione conversion by Nocardioides simplex VKM Ac-2033D. J Steroid Biochem Mol Biol. 2003;87:319–25.
Fokina VV, Sukhodol’skaya GV, Gulevskaya SA, Gavrish EY, Evtushenko LI, Donova MV. The 1(2)-dehydrogenation of steroid substrates by Nocardioides simplex VKM Ac-2033D. Microbiology. 2003;72:24–9.
Sukhodolskaya G, Fokina V, Shutov A, Nikolayeva V, Savinova T, Grishin Y, et al. Bioconversion of 6-(N-methyl-N-phenyl) aminomethyl androstane steroids by Nocardioides simplex. Steroids. 2017;118:9–16.
Article
CAS
PubMed
Google Scholar
Mutafova B, Mutafov S. Microbial transformations of plant origin compounds as a step in preparation of highly valuable pharmaceuticals. J Drug Metab Toxicol. 2016;7:204–15.
Article
CAS
Google Scholar
Costa S, Zappaterra F, Summa D, Semeraro B, Fantin G. Δ1-dehydrogenation and C20 reduction of cortisone and hydrocortisone catalyzed by Rhodococcus strains. Molecules. 2020;25:2192.
Article
CAS
PubMed Central
Google Scholar
Sukhodolskaya GV, Donova MV, Nikolaeva VM, Koshcheyenko KA, Dovbnya DV, Khomutov SM, et al. Method of the producing 1(2)-dehydroderivatives of 4-delta-3-ketosteroids. RU Patent 2156302. 2000.
Google Scholar
Fokina VV, Karpov AV, Sidorov IA, Andrjushina VA, Arinbasarova AY. The influence of β-cyclodextrin on the kinetics of 1-en-dehydrogenation of 6α-methylhydrocortisone by Arthrobacter globiformis cells. Appl Microbiol Biotechnol. 1997;47:645–9.
Article
CAS
Google Scholar
Sukhodol’skaja GV, Savinova TS, Fokina VV, Shutov AA, Nikolaeva VM, Lukashev NV, et al. Microbiological method of producing 1,2-dehydrogenated derivatives of delta-4-3-keto-steroids of androstane family in aqueous organic media. RU Patent 2447154. 2012.
Google Scholar
Lobastova TG, Khomutov SM, Shutov AA, Donova MV. Microbiological synthesis of stereoisomeric 7(α/β)-hydroxytestololactones and 7(α/β)-hydroxytestolactones. Appl Microbiol Biotechnol. 2019;103:4967–76.
Article
CAS
PubMed
Google Scholar
Zvyagintseva IS, Skryabin GK. Dehydrogenation of steroids by mycobacteria. Biol Bull Acad Sci USSR. 1964;4:525–32.
Google Scholar
Krassilnikov N, Skryabin G, Aseeva I, Korsunskaya L. The 1,2-dehydrogenation of hydrocortisone by Mycobacterium sp. 193 cells. Dokl Biol Sci Sect. 1959;128:1063–5.
Google Scholar
Lestrovaya N, Nazaruk M, Skryabin G. The dehydrogenation and reduction of the a ring of delta-4-3-ketosteroids by cell-free extracts of Mycobacterium globiforme 193. Dokl Biol Sci Sect. 1965;163:768–70.
CAS
Google Scholar
Arinbasarova AY, Koshcheyenko KA. Covalent binding of cells with activated silica gel. Prikl Biokhim Mikrobiol. 1980;16:854–61.
CAS
Google Scholar
Prauser H. Nocardioides, a new genus of the order Actinomycetales. Int J Syst Bacteriol. 1976;26:58–65.
Article
Google Scholar
O’Donnell AG, Goodfellow M, Minnikin DE. Lipids in the classification of Nocardioides: reclassification of Arthrobacter simplex (Jensen) Lochhead in the genus Nocardioides (Prauser) emend. O’Donnell et al. as Nocardioides simplex comb. nov. Arch Microbiol. 1982;133:323–9.
Article
PubMed
Google Scholar
Goodfellow M, Whitman WB, Bergey DH. Bergey’s manual of systematic bacteriology. Vol. 5. The Actinobacteria. 2. Ed. New York: Springer; 2012.
Book
Google Scholar
Suzuki K-I, Komagata K. Pimelobacter gen. Nov., a new genus of coryneform bacteria with LL-diaminopimelic acid in the cell wall. J Gen Appl Microbiol. 1983;29:59–71.
Article
CAS
Google Scholar
Collins MD, Dorsch M, Stackebrandt E. Transfer of Pimelobacter tumescens to Terrabacter gen. Nov. as Terrabacter tumescens comb. nov. and of Pimelobacter jensenii to Nocardioides as Nocardioides jensenii comb. nov. Int J Syst Bacteriol. 1989;39:1–6.
Article
CAS
Google Scholar
Yoon J-H, Park Y-H. The genus Nocardioides. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, editors. The prokaryotes. New York, NY: Springer New York; 2006. p. 1099–113. https://doi.org/10.1007/0-387-30743-5_44.
Chapter
Google Scholar
Rohman A, Dijkstra BW. The role and mechanism of microbial 3-ketosteroid Δ1-dehydrogenases in steroid breakdown. J Steroid Biochem Mol Biol. 2019;191:105366.
Article
CAS
PubMed
Google Scholar
Catroux G, Fournier J-C, Blachère H. Importance de la forme cristalline de l’acétate de cortisone pour sa déshydrogénation en C-1 par Arthrobacter simplex. Can J Biochem. 1968;46:537–42.
Article
CAS
PubMed
Google Scholar
Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinforma Oxf Engl. 2011;27:1017–8.
Article
CAS
Google Scholar
Guevara G, Fernández de las Heras L, Perera J, Navarro Llorens JM. Functional differentiation of 3-ketosteroid Δ1-dehydrogenase isozymes in Rhodococcus ruber strain Chol-4. Microb Cell Factories. 2017;16. https://doi.org/10.1186/s12934-017-0657-1.
Bergstrand LH, Cardenas E, Holert J, Van Hamme JD, Mohn WW. Delineation of steroid-degrading microorganisms through comparative genomic analysis. mBio. 2016;7:e00166.
CAS
PubMed
PubMed Central
Google Scholar
Devi S, Kanwar SS. Cholesterol oxidase: source, properties and applications. Insights Enzyme Res. 2017;01:5–17.
Google Scholar
Cho H-S, Choi G, Choi KY, Oh B-H. Crystal structure and enzyme mechanism of Δ5-3-ketosteroid isomerase from Pseudomonas testosteroni. Biochemistry. 1998;37:8325–30.
Article
CAS
PubMed
Google Scholar
García-Fernández E, Medrano FJ, Galán B, García JL. Deciphering the transcriptional regulation of cholesterol catabolic pathway in Mycobacteria: identification of the inducer of KstR repressor. J Biol Chem. 2014;289:17576–88.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wilbrink MH, Petrusma M, Dijkhuizen L, van der Geize R. FadD19 of Rhodococcus rhodochrous DSM43269, a steroid-coenzyme a ligase essential for degradation of C-24 branched sterol side chains. Appl Environ Microbiol. 2011;77:4455–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang M, Lu R, Guja KE, Wipperman MF, St Clair JR, Bonds AC, et al. Unraveling cholesterol catabolism in Mycobacterium tuberculosis: ChsE4-ChsE5 α2β2 acyl-CoA dehydrogenase initiates β-oxidation of 3-oxo-cholest-4-en-26-oyl CoA. ACS Infect Dis. 2015;1:110–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohn WW, Wilbrink MH, Casabon I, Stewart GR, Liu J, van der Geize R, et al. Gene cluster encoding cholate catabolism in Rhodococcus spp. J Bacteriol. 2012;194:6712–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruprecht A, Maddox J, Stirling AJ, Visaggio N, Seah SYK. Characterization of novel acyl coenzyme a dehydrogenases involved in bacterial steroid degradation. J Bacteriol. 2015;197:1360–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wipperman MF, Sampson NS, Thomas ST. Pathogen roid rage: cholesterol utilization by Mycobacterium tuberculosis. Crit Rev Biochem Mol Biol. 2014;49:269–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schaefer CM, Lu R, Nesbitt NM, Schiebel J, Sampson NS, Kisker C. FadA5 a thiolase from Mycobacterium tuberculosis: a steroid-binding pocket reveals the potential for drug development against tuberculosis. Structure. 2015;23:21–33.
Article
CAS
PubMed
Google Scholar
Thomas ST, Sampson NS. Mycobacterium tuberculosis utilizes a unique heterotetrameric structure for dehydrogenation of the cholesterol side chain. Biochemistry. 2013;52:2895–904.
Article
CAS
PubMed
Google Scholar
Thomas ST, VanderVen BC, Sherman DR, Russell DG, Sampson NS. Pathway profiling in Mycobacterium tuberculosis: elucidation of cholesterol-derived catabolite and enzymes that catalyze its metabolism. J Biol Chem. 2011;286:43668–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang M, Guja KE, Thomas ST, Garcia-Diaz M, Sampson NS. A distinct MaoC-like enoyl-CoA hydratase architecture mediates cholesterol catabolism in Mycobacterium tuberculosis. ACS Chem Biol. 2014;9:2632–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horinouchi M, Hayashi T, Kudo T. Steroid degradation in Comamonas testosteroni. J Steroid Biochem Mol Biol. 2012;129:4–14.
Article
CAS
PubMed
Google Scholar
Zhang Q, Ren Y, He J, Cheng S, Yuan J, Ge F, et al. Multiplicity of 3-ketosteroid Δ1-dehydrogenase enzymes in Gordonia neofelifaecis NRRL B-59395 with preferences for different steroids. Ann Microbiol. 2015;65:1961–71.
Article
CAS
Google Scholar
Horinouchi M, Kurita T, Yamamoto T, Hatori E, Hayashi T, Kudo T. Steroid degradation gene cluster of Comamonas testosteroni consisting of 18 putative genes from meta-cleavage enzyme gene tesB to regulator gene tesR. Biochem Biophys Res Commun. 2004;324:597–604.
Article
CAS
PubMed
Google Scholar
Capyk JK, D’Angelo I, Strynadka NC, Eltis LD. Characterization of 3-ketosteroid 9α-hydroxylase, a Rieske oxygenase in the cholesterol degradation pathway of Mycobacterium tuberculosis. J Biol Chem. 2009;284:9937–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horinouchi M, Koshino H, Malon M, Hirota H, Hayashi T. Steroid degradation in Comamonas testosteroni TA441: identification of metabolites and the genes involved in the reactions necessary before D-ring cleavage. Appl Environ Microbiol. 2018;84. https://doi.org/10.1128/AEM.01324-18.
Yam KC, D’Angelo I, Kalscheuer R, Zhu H, Wang J-X, Snieckus V, et al. Studies of a ring-cleaving dioxygenase illuminate the role of cholesterol metabolism in the pathogenesis of Mycobacterium tuberculosis. PLoS Pathog. 2009;5:e1000344.
Article
PubMed
PubMed Central
CAS
Google Scholar
Horinouchi M, Hayashi T, Koshino H, Kurita T, Kudo T. Identification of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid, 4-hydroxy-2-oxohexanoic acid, and 2-hydroxyhexa-2,4-dienoic acid and related enzymes involved in testosterone degradation in Comamonas testosteroni TA441. Appl Environ Microbiol. 2005;71:5275–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Casabon I, Crowe AM, Liu J, Eltis LD. FadD3 is an acyl-CoA synthetase that initiates catabolism of cholesterol rings C and D in actinobacteria: role of FadD3 in cholesterol catabolism. Mol Microbiol. 2013;87:269–83.
Article
CAS
PubMed
Google Scholar
Horinouchi M, Koshino H, Malon M, Hirota H, Hayashi T. Steroid degradation in Comamonas testosteroni TA441: identification of the entire β-oxidation cycle of the cleaved B ring. Appl Environ Microbiol. 2019;85. https://doi.org/10.1128/AEM.01204-19.
van der Geize R, Grommen AWF, Hessels GI, Jacobs AAC, Dijkhuizen L. The steroid catabolic pathway of the intracellular pathogen Rhodococcus equi is important for pathogenesis and a target for vaccine development. Plos Pathog. 2011;7:e1002181.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wipperman MF, Yang M, Thomas ST, Sampson NS. Shrinking the FadE proteome of Mycobacterium tuberculosis: insights into cholesterol metabolism through identification of an α2β2 heterotetrameric acyl coenzyme a dehydrogenase family. J Bacteriol. 2013;195:4331–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujimoto Y, Chen CS, Gopalan AS, Sih CJ. Microbial degradation of the phytosterol side chain. II. Incorporation of [14C]-NaHCO3 onto the C-28 position. J Am Chem Soc. 1982;104:4720–2.
Article
CAS
Google Scholar
Casabon I, Zhu S-H, Otani H, Liu J, Mohn WW, Eltis LD. Regulation of the KstR2 regulon of Mycobacterium tuberculosis by a cholesterol catabolite. Mol Microbiol. 2013;89:1201–12.
Article
CAS
PubMed
Google Scholar
Dovbnya DV, Egorova OV, Donova MV. Microbial side-chain degradation of ergosterol and its 3-substituted derivatives: a new route for obtaining of deltanoids. Steroids. 2010;75:653–8.
Article
CAS
PubMed
Google Scholar
Itagaki E, Matushita H, Hatta T. Steroid transhydrogenase activity of 3-ketosteroid-delta 1-dehydrogenase from Nocardia corallina. J Biochem (Tokyo). 1990;108:122–7.
Article
CAS
Google Scholar
Petrusma M, Hessels G, Dijkhuizen L, van der Geize R. Multiplicity of 3-ketosteroid-9α-hydroxylase enzymes in Rhodococcus rhodochrous DSM43269 for specific degradation of different classes of steroids. J Bacteriol. 2011;193:3931–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bragin EY, Shtratnikova VY, Dovbnya DV, Schelkunov MI, Pekov YA, Malakho SG, et al. Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains. J Steroid Biochem Mol Biol. 2013;138:41–53.
Article
CAS
PubMed
Google Scholar
van der Geize R, Hessels GI, van Gerwen R, van der Meijden P, Dijkhuizen L. Molecular and functional characterization of kshA and kshB, encoding two components of 3-ketosteroid 9alpha-hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1. Mol Microbiol. 2002;45:1007–18.
Article
PubMed
Google Scholar
van der Geize R, Hessels GI, Dijkhuizen L. Molecular and functional characterization of the kstD2 gene of Rhodococcus erythropolis SQ1 encoding a second 3-ketosteroid Δ1-dehydrogenase isoenzyme. Microbiology. 2002;148:3285–92.
Article
PubMed
Google Scholar
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang JK, Park MS, Waldo GS, Suh SW. Directed evolution approach to a structural genomics project: Rv2002 from Mycobacterium tuberculosis. Proc Natl Acad Sci. 2003;100:455–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghosh D, Wawrzak Z, Weeks CM, Duax WL, Erman M. The refined three-dimensional structure of 3α,20β-hydroxysteroid dehydrogenase and possible roles of the residues conserved in short-chain dehydrogenases. Structure. 1994;2:629–40.
Article
CAS
PubMed
Google Scholar
Gerber A, Milhim M, Hartz P, Zapp J, Bernhardt R. Genetic engineering of Bacillus megaterium for high-yield production of the major teleost progestogens 17α,20β-di- and 17α,20β,21α-trihydroxy-4-pregnen-3-one. Metab Eng. 2016;36:19–27.
Article
CAS
PubMed
Google Scholar
Medentsev AG, Arinbasarova AY, Koshcheyenko KA, Akimenko VK, Skryabin GK. Regulation of 3-ketosteroid-1-en-dehydrogenase activity of Arthrobacter globiformis cells by a respiratory chain. J Steroid Biochem. 1985;23:365–8.
Article
CAS
PubMed
Google Scholar
Grazon C, Baer RC, Kuzmanović U, Nguyen T, Chen M, Zamani M, et al. A progesterone biosensor derived from microbial screening. Nat Commun. 2020;11. https://doi.org/10.1038/s41467-020-14942-5.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods San Diego Calif. 2001;25:402–8.
Article
CAS
Google Scholar
McClure R, Balasubramanian D, Sun Y, Bobrovskyy M, Sumby P, Genco CA, et al. Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res. 2013;41:e140.
Article
CAS
PubMed
PubMed Central
Google Scholar
Solovyev V, Salamov A. Automatic annotation of microbial genomes and metagenomic sequences. In: Metagenomics and its applications in agriculture, biomedicine and environmental studies. Hauppauge: Nova Science Publisher’s; 2011. p. 61–78.
Google Scholar
Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol. 1994;2:28–36.
CAS
PubMed
Google Scholar