Zhang L, Xiang Z, Zhao G, Wu Z. Cui H: [functionalized genetic engineered silk-based biomaterials and their applications]. Sheng Wu Gong Cheng Xue Bao. 2019;35:956–71.
PubMed
Google Scholar
Saric M, Scheibel T. Engineering of silk proteins for materials applications. Curr Opin Biotechnol. 2019;60:213–20.
Article
CAS
Google Scholar
Nguyen TP, Nguyen QV, Nguyen VH, Le TH, Huynh VQN, Vo DN, Trinh QT, Kim SY, Le QV. Silk fibroin-based biomaterials for biomedical applications: a review. Polymers (Basel). 2019;11:1933.
Aigner TB, DeSimone E, Scheibel T. Biomedical applications of recombinant silk-based materials. Adv Mater. 2018;30:e1704636.
Article
Google Scholar
Yoshida M, Kamei N, Muto K, Kunisawa J, Takayama K, Peppas NA, Takeda-Morishita M. Complexation hydrogels as potential carriers in oral vaccine delivery systems. Eur J Pharm Biopharm. 2017;112:138–42.
Article
CAS
Google Scholar
Hofer M, Winter G, Myschik J. Recombinant spider silk particles for controlled delivery of protein drugs. Biomaterials. 2012;33:1554–62.
Article
CAS
Google Scholar
Lammel A, Schwab M, Hofer M, Winter G, Scheibel T. Recombinant spider silk particles as drug delivery vehicles. Biomaterials. 2011;32:2233–40.
Article
CAS
Google Scholar
Lucke M, Mottas I, Herbst T, Hotz C, Romer L, Schierling M, Herold HM, Slotta U, Spinetti T, Scheibel T, et al. Engineered hybrid spider silk particles as delivery system for peptide vaccines. Biomaterials. 2018;172:105–15.
Article
CAS
Google Scholar
Schierling MB, Doblhofer E, Scheibel T. Cellular uptake of drug loaded spider silk particles. Biomater Sci. 2016;4:1515–23.
Article
CAS
Google Scholar
Tokareva O, Michalczechen-Lacerda VA, Rech EL, Kaplan DL. Recombinant DNA production of spider silk proteins. Microb Biotechnol. 2013;6:651–63.
Article
CAS
Google Scholar
Rising A, Widhe M, Johansson J, Hedhammar M. Spider silk proteins: recent advances in recombinant production, structure-function relationships and biomedical applications. Cell Mol Life Sci. 2011;68:169–84.
Article
CAS
Google Scholar
Scheibel T. Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins. Microb Cell Factories. 2004;3:14.
Article
Google Scholar
Bowen CH, Reed TJ, Sargent CJ, Mpamo B, Galazka JM, Zhang F. Seeded chain-growth polymerization of proteins in living bacterial cells. ACS Synth Biol. 2019;8:2651–8.
Article
CAS
Google Scholar
Radtke C. Natural occurring silks and their analogues as materials for nerve conduits. Int J Mol Sci. 2016;17:1754.
Chen G, Liu X, Zhang Y, Lin S, Yang Z, Johansson J, Rising A, Meng Q. Full-length minor ampullate spidroin gene sequence. PLoS One. 2012;7:e52293.
Article
CAS
Google Scholar
Guinea GV, Elices M, Plaza GR, Perea GB, Daza R, Riekel C, Agullo-Rueda F, Hayashi C, Zhao Y, Perez-Rigueiro J. Minor ampullate silks from Nephila and Argiope spiders: tensile properties and microstructural characterization. Biomacromolecules. 2012;13:2087–98.
Article
CAS
Google Scholar
Rising A, Hjalm G, Engstrom W, Johansson J. N-terminal nonrepetitive domain common to dragline, flagelliform, and cylindriform spider silk proteins. Biomacromolecules. 2006;7:3120–4.
Article
CAS
Google Scholar
Hagn F, Eisoldt L, Hardy JG, Vendrely C, Coles M, Scheibel T, Kessler H. A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature. 2010;465:239–42.
Article
CAS
Google Scholar
Zhang H, Zhou F, Jiang X, Cao M, Wang S, Zou H, Cao Y, Xian M, Liu H. Microbial production of amino acid-modified spider dragline silk protein with intensively improved mechanical properties. Prep Biochem Biotechnol. 2016;46:552–8.
Article
CAS
Google Scholar
Liu T, Liang A, Liang Z, Li G, Wang F. Construction of a synthetic Araneus ventricosus dragline silk gene multimer and its expression in Escherichia coli. 3 Biotech. 2018;8:252.
Article
Google Scholar
Fahnestock SR, Yao Z, Bedzyk LA. Microbial production of spider silk proteins. J Biotechnol. 2000;74:105–19.
CAS
PubMed
Google Scholar
Widhe M, Johansson J, Hedhammar M, Rising A. Invited review current progress and limitations of spider silk for biomedical applications. Biopolymers. 2012;97:468–78.
Article
CAS
Google Scholar
Werten MW, Moers AP, Vong T, Zuilhof H, van Hest JC, de Wolf FA. Biosynthesis of an amphiphilic silk-like polymer. Biomacromolecules. 2008;9:1705–11.
Article
CAS
Google Scholar
Werten MWT, Eggink G, Cohen Stuart MA, de Wolf FA. Production of protein-based polymers in Pichia pastoris. Biotechnol Adv. 2019;37:642–66.
Article
CAS
Google Scholar
Edlund AM, Jones J, Lewis R, Quinn JC. Economic feasibility and environmental impact of synthetic spider silk production from escherichia coli. New Biotechnol. 2018;42:12–8.
Article
CAS
Google Scholar
Bini E, Foo CW, Huang J, Karageorgiou V, Kitchel B, Kaplan DL. RGD-functionalized bioengineered spider dragline silk biomaterial. Biomacromolecules. 2006;7:3139–45.
Article
CAS
Google Scholar
Dams-Kozlowska H, Majer A, Tomasiewicz P, Lozinska J, Kaplan DL, Mackiewicz A. Purification and cytotoxicity of tag-free bioengineered spider silk proteins. J Biomed Mater Res A. 2013;101:456–64.
Article
Google Scholar
Jastrzebska K, Felcyn E, Kozak M, Szybowicz M, Buchwald T, Pietralik Z, Jesionowski T, Mackiewicz A, Dams-Kozlowska H. The method of purifying bioengineered spider silk determines the silk sphere properties. Sci Rep. 2016;6:28106.
Article
CAS
Google Scholar
Mello CM, Soares JW, Arcidiacono S, Butler MM. Acid extraction and purification of recombinant spider silk proteins. Biomacromolecules. 2004;5:1849–52.
Article
CAS
Google Scholar
Fahnestock SR, Bedzyk LA. Production of synthetic spider dragline silk protein in Pichia pastoris. Appl Microbiol Biotechnol. 1997;47:33–9.
Article
CAS
Google Scholar
Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Factories. 2015;14:41.
Article
Google Scholar
Ryan BJ, Kinsella GK. Differential precipitation and Solubilization of proteins. Methods Mol Biol. 2017;1485:191–208.
Article
CAS
Google Scholar
Qi X, Sun Y, Xiong S. A single freeze-thawing cycle for highly efficient solubilization of inclusion body proteins and its refolding into bioactive form. Microb Cell Factories. 2015;14:24..
Article
Google Scholar
Singhvi P, Saneja A, Srichandan S, Panda AK. Bacterial inclusion bodies: a treasure trove of bioactive proteins. Trends Biotechnol. 2020;38:474–86.
Delanghe S, Delanghe JR, Speeckaert R, Van Biesen W, Speeckaert MM. Mechanisms and consequences of carbamoylation. Nat Rev Nephrol. 2017;13:580–93.
Article
CAS
Google Scholar
Kollipara L, Zahedi RP. Protein carbamylation: in vivo modification or in vitro artefact? Proteomics. 2013;13:941–4.
Article
CAS
Google Scholar
Sun S, Zhou JY, Yang W, Zhang H. Inhibition of protein carbamylation in urea solution using ammonium-containing buffers. Anal Biochem. 2014;446:76–81.
Article
CAS
Google Scholar