Sugar. World Markets and Trade. Washington, DC: 20250: United States Department of Agriculture; 2018.
Google Scholar
Birru E, Erlich C, Martin A. Energy performance comparisons and enhancements in the sugar cane industry. Biomass Conversion Biorefinery. 2019;9(2):267–82.
Article
Google Scholar
Zhang ZY, Rackemann DW, Doherty WOS, O’Hara IM. Glycerol carbonate as green solvent for pretreatment of sugarcane bagasse. Biotechnol Biofuels. 2013;6:153.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sharma RK, Yadav KR, Maheshwari VL, Kothari RM. Baggasse preservation: a need for a biotechnological approach. Crit Rev Biotechnol. 2000;20(4):237–63.
Article
CAS
PubMed
Google Scholar
Chinga-Carrasco G, Ehman NV, Pettersson J, Vallejos ME, Brodin MW, Felissia FE, et al. Pulping and pretreatment affect the characteristics of bagasse inks for three-dimensional printing. ACS Sustain Chem Eng. 2018;6(3):4068–75.
Article
CAS
Google Scholar
Bian J, Peng F, Peng X-P, Peng P, Xu F, Sun R-C. Structural features and antioxidant activity of xylooligosaccharides enzymatically produced from sugarcane bagasse. Bioresour Technol. 2013;127:236–41.
Article
CAS
PubMed
Google Scholar
Silva CF, Azevedo RS, Braga C, da Silva R, Dias ES, Schwan RF. Microbial diversity in a bagasse-based compost prepared for the production of Agaricus brasiliensis. Braz J Microbiol. 2009;40(3):590–600.
Article
PubMed Central
PubMed
Google Scholar
Thomas L, Larroche C, Pandey A. Current developments in solid-state fermentation. Biochem Eng J. 2013;81:146–61.
Article
CAS
Google Scholar
Pandey A, Soccol CR, Nigam P, Soccol VT. Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol. 2000;74(1):69–80.
Article
CAS
Google Scholar
Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev. 2018;47(3):852–908.
Article
CAS
PubMed
Google Scholar
Harrison MD. Sugarcane-derived animal feed. In: O’Hara IM, Sagadevan M, editors. Sugarcane-based biofuels and bioproducts. Hoboken: Wiley; 2016. p. 281–300.
Google Scholar
Lacey J. Molding of Sugar-Cane Bagasse and Its Prevention. Ann Appl Biol. 1974;76(1):63.
Article
CAS
Google Scholar
Mhuantong W, Charoensawan V, Kanokratana P, Tangphatsornruang S, Champreda V. Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities. Biotechnol Biofuels. 2015;8:16.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rattanachomsri U, Kanokratana P, Eurwilaichitr L, Igarashi Y, Champreda V. Culture-independent phylogenetic analysis of the microbial Community in Industrial Sugarcane Bagasse Feedstock Piles. Biosci Biotechnol Biochem. 2011;75(2):232–9.
Article
CAS
PubMed
Google Scholar
Schmidt O, Walter K. Succession and activity of microorganisms in stored bagasse. Eur J Appl Microbiol. 1978;5(1):69–77.
Article
CAS
Google Scholar
Wright M, Lima I, Bigner R. Microbial and physicochemical properties of sugarcane bagasse for potential conversion to value-added products. Int Sugar J. 2016;118:10–8.
Google Scholar
BSLd S, AFS G, Franciscon EG, JMd O, Baffi MA. Thermotolerant and mesophylic fungi from sugarcane bagasse and their prospection for biomass-degrading enzyme production. Braz J Microbiol. 2015;46:903–10.
Article
CAS
Google Scholar
Batista-García RA, Balcázar-López E, Miranda-Miranda E, Sánchez-Reyes A, Cuervo-Soto L, Aceves-Zamudio D, et al. Characterization of Lignocellulolytic activities from a moderate halophile strain of Aspergillus caesiellus isolated from a sugarcane bagasse fermentation. PLoS One. 2014;9(8):e105893.
Article
PubMed Central
CAS
PubMed
Google Scholar
Garcia-Huante Y, Cayetano-Cruz M, Santiago-Hernandez A, Cano-Ramirez C, Marsch-Moreno R, Campos JE, et al. The thermophilic biomass-degrading fungus Thielavia terrestris Co3Bag1 produces a hyperthermophilic and thermostable beta-1,4-xylanase with exo- and endo-activity. Extremophiles. 2017;21(1):175–86.
Article
CAS
PubMed
Google Scholar
Moretti MMS, Bocchini-Martins DA, Silva RD, Rodrigues A, Sette LD, Gomes E. Selection of thermophilic and thermotolerant fungi for the production of cellulases and xylanases under solid-state fermentation. Braz J Microbiol. 2012;43(3):1062–71.
Article
CAS
PubMed Central
PubMed
Google Scholar
Shrestha P, Szaro TM, Bruns TD, Taylor JW. Systematic search for cultivatable Fungi that best deconstruct cell walls of Miscanthus and sugarcane in the Field. Appl Environ Microb. 2011;77(15):5490–504.
Article
CAS
Google Scholar
Kanokratana P, Mhuantong W, Laothanachareon T, Tangphatsornruang S, Eurwilaichitr L, Pootanakit K, et al. Phylogenetic analysis and metabolic potential of microbial communities in an industrial bagasse collection site. Microb Ecol. 2013;66(2):322–34.
Article
CAS
PubMed
Google Scholar
Kanokratana P, Eurwilaichitr L, Pootanakit K, Champreda V. Identification of glycosyl hydrolases from a metagenomic library of microflora in sugarcane bagasse collection site and their cooperative action on cellulose degradation. J Biosci Bioeng. 2015;119(4):384–91.
Article
CAS
PubMed
Google Scholar
Batista García R, Casasanero R, Alvarez-Castillo A, Dobson A, Folch-Mallol J. Prokaryotic diversity from the culture-independent taxonomic analysis of a sugarcane bagasse metagenome. Merit Res J Microbiol Biol Sci. 2016;4:022–38.
Google Scholar
Wongwilaiwalin S, Laothanachareon T, Mhuantong W, Tangphatsornruang S, Eurwilaichitr L, Igarashi Y, et al. Comparative metagenomic analysis of microcosm structures and lignocellulolytic enzyme systems of symbiotic biomass-degrading consortia. Appl Microbiol Biot. 2013;97(20):8941–54.
Article
CAS
Google Scholar
Alvarez TM, Paiva JH, Ruiz DM, Cairo JP, Pereira IO, Paixao DA, et al. Structure and function of a novel cellulase 5 from sugarcane soil metagenome. PLoS One. 2013;8(12):e83635.
Article
PubMed Central
CAS
PubMed
Google Scholar
Alvarez TM, Goldbeck R, dos Santos CR, Paixao DA, Goncalves TA, Franco Cairo JP, et al. Development and biotechnological application of a novel endoxylanase family GH10 identified from sugarcane soil metagenome. PLoS One. 2013;8(7):e70014.
Article
CAS
PubMed Central
PubMed
Google Scholar
Heiss-Blanquet S, Fayolle-Guichard F, Lombard V, Hebert A, Coutinho PM, Groppi A, et al. Composting-like conditions are more efficient for enrichment and diversity of organisms containing Cellulase-encoding genes than submerged cultures. PLoS One. 2016;11(12):e0167216.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mello BL, Alessi AM, McQueen-Mason S, Bruce NC, Polikarpov I. Nutrient availability shapes the microbial community structure in sugarcane bagasse compost-derived consortia. Sci Rep. 2016;6:38781.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ventorino V, Aliberti A, Faraco V, Robertiello A, Giacobbe S, Ercolini D, et al. Exploring the microbiota dynamics related to vegetable biomasses degradation and study of lignocellulose-degrading bacteria for industrial biotechnological application. Sci Rep. 2015;5:8161.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ventorino V, Ionata E, Birolo L, Montella S, Marcolongo L, de Chiaro A, et al. Lignocellulose-adapted Endo-Cellulase producing Streptomyces strains for bioconversion of cellulose-based materials. Front Microbiol. 2016;7:2061.
Article
PubMed Central
PubMed
Google Scholar
Lagier J-C, Dubourg G, Million M, Cadoret F, Bilen M, Fenollar F, et al. Culturing the human microbiota and culturomics. Nat Rev Microbiol. 2018;16(9):540–50.
Article
CAS
PubMed
Google Scholar
Batista-Garcia RA, Sanchez-Carbente MD, Talia P, Jackson SA, O'Leary ND, Dobson ADW, et al. From lignocellulosic metagenomes to lignocellulolytic genes: trends, challenges and future prospects. Biofuels Bioprod Biorefin. 2016;10(6):864–82.
Article
CAS
Google Scholar
Chase AB, Karaoz U, Brodie EL, Gomez-Lunar Z, Martiny AC, Martiny JBH. Microdiversity of an Abundant Terrestrial Bacterium Encompasses Extensive Variation in Ecologically Relevant Traits. Mbio. 2017;8:e01809–17.
Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47(D1):D259–D264.
Article
PubMed Central
CAS
Google Scholar
Yaegashi J, Kirby J, Ito M, Sun J, Dutta T, Mirsiaghi M, et al. Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts. Biotechnol Biofuels. 2017;10:241.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhu ZW, Zhang SF, Liu HW, Shen HW, Lin XP, Yang F, et al. A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun. 2012;3:1112.
Article
CAS
PubMed
Google Scholar
Castanha RF, Mariano AP, de Morais LAS, Scramin S, Monteiro RTR. Optimization of lipids production by Cryptococcus laurentii 11 using cheese whey with molasses. Braz J Microbiol. 2014;45(2):379–87.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ramírez-Castrillón M, Jaramillo-Garcia VP, Rosa PD, Landell MF, Vu D, Fabricio MF, et al. The Oleaginous Yeast Meyerozyma guilliermondii BI281A as a New Potential Biodiesel Feedstock: Selection and Lipid Production Optimization. Frontiers Microbiol. 2017;8:1776.
Article
Google Scholar
Abrao FO, Duarte ER, Pessoa MS, Santos VLD, Freitas Junior LF, Barros KO, et al. Notable fibrolytic enzyme production by Aspergillus spp. isolates from the gastrointestinal tract of beef cattle fed in lignified pastures. Plos One. 2017;12(8):e0183628.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lim Y, Kim K, Park U. Isolation of Lecythophora sp. YP363, a secretor of various thermostable plant cell wall-degrading enzymes with high activity. Afr J Microbiol Res. 2013;7(27):3517–25.
Google Scholar
Petrosyan P, García-Varela M, Luz-Madrigal A, Huitrón C, Flores ME. Streptomyces mexicanus sp. nov., a xylanolytic micro-organism isolated from soil. Int J Syst Evol Microbiol. 2003;53(1):269–73.
Article
CAS
PubMed
Google Scholar
Yilmaz P, Kottmann R, Field D, Knight R, Cole JR, Amaral-Zettler L, et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat Biotechnol. 2011;29:415.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lee BD, Apel WA, Sheridan PP, DeVeaux LC. Glycoside hydrolase gene transcription by Alicyclobacillus acidocaldarius during growth on wheat arabinoxylan and monosaccharides: a proposed xylan hydrolysis mechanism. Biotechnol Biofuels. 2018;11:110.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang W, Bai Y, Yang P, Luo H, Huang H, Meng K, et al. A novel bifunctional GH51 exo-α-l-arabinofuranosidase/endo-xylanase from Alicyclobacillus sp. A4 with significant biomass-degrading capacity. Biotechnol Biofuels. 2015;8(1):197.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee BD, Apel WA, DeVeaux LC, Sheridan PP. Concurrent metabolism of pentose and hexose sugars by the polyextremophile Alicyclobacillus acidocaldarius. J Ind Microbiol Biotechnol. 2017;44(10):1443–58.
Article
CAS
PubMed
Google Scholar
Goto K, Mochida K, Kato Y, Asahara M, Fujita R, An S-Y, et al. Proposal of six species of moderately thermophilic, acidophilic, endospore-forming bacteria: Alicyclobacillus contaminans sp. nov., Alicyclobacillus fastidiosus sp. nov., Alicyclobacillus kakegawensis sp. nov., Alicyclobacillus macrosporangiidus sp. nov., Alicyclobacillus sacchari sp. nov. and Alicyclobacillus shizuokensis sp. nov. Int J Syst Evol Microbiol. 2007;57(6):1276–85.
Article
CAS
PubMed
Google Scholar
Mavromatis K, Sikorski J, Lapidus A, Glavina Del Rio T, Copeland A, Tice H, et al. Complete genome sequence of Alicyclobacillus acidocaldarius type strain (104-IA). Stand Genomic Sci. 2010;2(1):9–18.
Article
PubMed Central
PubMed
Google Scholar
Myers MR, King GM. Isolation and characterization of Acidobacterium ailaaui sp. nov., a novel member of Acidobacteria subdivision 1, from a geothermally heated Hawaiian microbial mat. Int J Syst Evol Microbiol. 2016;66(12):5328–35.
Article
CAS
PubMed
Google Scholar
Yabe S, Aiba Y, Sakai Y, Hazaka M, Yokota A. Thermosporothrix hazakensis gen. Nov., sp. nov., isolated from compost, description of Thermosporotrichaceae fam. Nov. within the class Ktedonobacteria Cavaletti et al. 2007 and emended description of the class Ktedonobacteria. Int J Syst Evol Microbiol. 2010;60(8):1794–801.
Article
CAS
PubMed
Google Scholar
Yabe S, Sakai Y, Yokota A. Thermosporothrix narukonensis sp. nov., belonging to the class Ktedonobacteria, isolated from fallen leaves on geothermal soil, and emended description of the genus Thermosporothrix. Int J Syst Evol Microbiol. 2016;66(6):2152–7.
Article
CAS
PubMed
Google Scholar
Davis JR, Goodwin LA, Woyke T, Teshima H, Bruce D, Detter C, et al. Genome sequence of Amycolatopsis sp. strain ATCC 39116, a plant biomass-degrading actinomycete. J Bacteriol. 2012;194(9):2396–7.
Article
CAS
PubMed Central
PubMed
Google Scholar
Houbraken J, Spierenburg H, Frisvad JC. Rasamsonia, a new genus comprising thermotolerant and thermophilic Talaromyces and Geosmithia species. Antonie Van Leeuwenhoek. 2012;101(2):403–21.
Article
CAS
PubMed
Google Scholar
Martínez PM, Appeldoorn MM, Gruppen H, Kabel MA. The two Rasamsonia emersonii α-glucuronidases, ReGH67 and ReGH115, show a different mode-of-action towards glucuronoxylan and glucuronoxylo-oligosaccharides. Biotechnol Biofuels. 2016;9(1):105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tuohy MG, Coughlan MP. Production of thermostable xylan-degrading enzymes by Talaromyces emersonii. Bioresour Technol. 1992;39(2):131–7.
Article
CAS
Google Scholar
Wang K, Luo H, Bai Y, Shi P, Huang H, Xue X, et al. A thermophilic endo-1,4-β-glucanase from Talaromyces emersonii CBS394.64 with broad substrate specificity and great application potentials. Appl Microbiol Biot. 2014;98(16):7051–60.
Article
CAS
Google Scholar
Yilmaz N, Visagie CM, Houbraken J, Frisvad JC, Samson RA. Polyphasic taxonomy of the genus Talaromyces. Stud Mycol. 2014;78:175–341.
Article
CAS
PubMed Central
PubMed
Google Scholar
He R, Bai X, Cai P, Sun C, Zhang D, Chen S. Genome sequence of Talaromyces piceus 9–3 provides insights into lignocellulose degradation. 3 Biotech. 2017;7(6):368.
Article
PubMed Central
PubMed
Google Scholar
de Eugenio LI, Méndez-Líter JA, Nieto-Domínguez M, Alonso L, Gil-Muñoz J, Barriuso J, et al. Differential β-glucosidase expression as a function of carbon source availability in Talaromyces amestolkiae: a genomic and proteomic approach. Biotechnol Biofuels. 2017;10:161.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nieto-Dominguez M, de Eugenio LI, Barriuso J, Prieto A, Fernandez de Toro B, Canales-Mayordomo A, et al. Novel pH-stable glycoside hydrolase family 3 beta-Xylosidase from Talaromyces amestolkiae: an enzyme displaying Regioselective Transxylosylation. Appl Environ Microbiol. 2015;81(18):6380–92.
Article
CAS
PubMed Central
PubMed
Google Scholar
Guais O, Borderies G, Pichereaux C, Maestracci M, Neugnot V, Rossignol M, et al. Proteomics analysis of “Rovabio™ excel”, a secreted protein cocktail from the filamentous fungus Penicillium funiculosum grown under industrial process fermentation. J Ind Microbiol Biotechnol. 2008;35(12):1659–68.
Article
CAS
PubMed
Google Scholar
Chi ZM, Wang F, Chi Z, Yue LX, Liu GL, Zhang T. Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Appl Microbiol Biot. 2009;82(5):793–804.
Article
CAS
Google Scholar
Gostincar C, Ohm RA, Kogej T, Sonjak S, Turk M, Zajc J, et al. Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics. 2014;15:549.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kudanga T, Mwenje E. Extracellular cellulase production by tropical isolates of Aureobasidium pullulans. Can J Microbiol. 2005;51(9):773–6.
Article
CAS
PubMed
Google Scholar
McHunu NP, Permaul K, Abdul Rahman AY, Saito JA, Singh S, Alam M. Xylanase Superproducer: genome sequence of a compost-loving Thermophilic fungus, Thermomyces lanuginosus strain SSBP. Genome Announc . 2013;1(3):e00388–13.
Article
PubMed Central
PubMed
Google Scholar
Martinez D, Larrondo LF, Putnam N, Gelpke MDS, Huang K, Chapman J, et al. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol. 2004;22:695.
Article
CAS
PubMed
Google Scholar
Hassanpour M, Cai G, Gebbie LK, Speight RE, Junior Te'o VS, O'Hara IM, et al. Co-utilization of acidified glycerol pretreated-sugarcane bagasse for microbial oil production by a novel Rhodosporidium strain. Engineering Life Sci. 2019;19(3):217–28.
Article
CAS
Google Scholar
Sarkar S, Chakravorty S, Mukherjee A, Bhattacharya D, Bhattacharya S, Gachhui R. De novo RNA-Seq based transcriptome analysis of Papiliotrema laurentii strain RY1 under nitrogen starvation. Gene. 2018;645:146–56.
Article
CAS
PubMed
Google Scholar
Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, et al. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat Biotechnol. 2011;29(10):922–U222.
Article
CAS
PubMed
Google Scholar
Sharmin F, Wakelin S, Huygens F, Hargreaves M. Firmicutes dominate the bacterial taxa within sugar-cane processing plants. Sci Rep. 2013;3:3107.
Article
PubMed Central
PubMed
Google Scholar
Xu J. Fungal DNA barcoding. Genome. 2016;59(11):913–32.
Article
CAS
PubMed
Google Scholar
Toju H, Tanabe AS, Yamamoto S, Sato H. High-Coverage ITS Primers for the DNA-Based Identification of Ascomycetes and Basidiomycetes in Environmental Samples. Plos One. 2012;7(7):e40863.
Article
CAS
PubMed Central
PubMed
Google Scholar
Xu XM, Passey T, Wei F, Saville R, Harrison RJ. Amplicon-based metagenomics identified candidate organisms in soils that caused yield decline in strawberry. Hortic Res-England. 2015;2:15022.
Article
CAS
Google Scholar
Asemaninejad A, Weerasuriya N, Gloor GB, Lindo Z, Thorn RG. New primers for discovering fungal diversity using nuclear large ribosomal DNA. PLoS One. 2016;11(7):e0159043.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang L, Ma H, Zhang H, Xun L, Chen G, Wang L. Thermomyces lanuginosus is the dominant fungus in maize straw composts. Bioresour Technol. 2015;197:266–75.
Article
CAS
PubMed
Google Scholar
Kuo H-W, Zeng J-K, Wang P-H, Chen W-C. A novel Exo-Glucanase explored from a Meyerozyma sp. Fungal Strain. Adv Enzyme Res. 2015;3(3):53–65.
Article
CAS
Google Scholar
Schmidt SK, Vimercati L, Darcy JL, Arán P, Gendron EMS, Solon AJ, et al. A Naganishia in high places: functioning populations or dormant cells from the atmosphere? Mycology. 2017;8(3):153–63.
Article
CAS
PubMed Central
PubMed
Google Scholar
Selvakumar P, Sivashanmugam P. Study on lipid accumulation in novel oleaginous yeast Naganishia liquefaciens NITTS2 utilizing pre-digested municipal waste activated sludge: a low-cost feedstock for biodiesel production. Appl Biochem Biotechnol. 2018;186(3):731–49.
Article
CAS
PubMed
Google Scholar
Cadete RM, Lopes MR, Rosa CA. Yeasts associated with decomposing plant material and rotting wood. In: Buzzini P, Lachance M-A, Yurkov A, editors. Yeasts in natural ecosystems: diversity. Cham: Springer International Publishing; 2017. p. 265–92.
Chapter
Google Scholar
Carvalho AFA, PdO N, Zaghetto de Almeida P, Bueno da Silva J, Escaramboni B, Pastore GM. Screening of Xylanolytic Aspergillus fumigatus for prebiotic Xylooligosaccharide production using bagasse. Food Technol Biotechnol. 2015;53(4):428–35.
CAS
PubMed Central
PubMed
Google Scholar
Liu D, Li J, Zhao S, Zhang R, Wang M, Miao Y, et al. Secretome diversity and quantitative analysis of cellulolytic Aspergillus fumigatusZ5 in the presence of different carbon sources. Biotechnol Biofuels. 2013;6(1):149.
Article
CAS
PubMed Central
PubMed
Google Scholar
Borstlap CJ, de Witt RN, Botha A, Volschenk H. Draft genome sequence of the lignocellulose-degrading Ascomycete Coniochaeta pulveracea CAB 683. Microbiol Res Announc. 2019;8(1):e01429–18.
Google Scholar
Jiménez DJ, Hector RE, Riley R, Lipzen A, Kuo RC, Amirebrahimi M, et al. Draft genome sequence of Coniochaeta ligniaria NRRL 30616, a Lignocellulolytic fungus for bioabatement of inhibitors in plant biomass Hydrolysates. Genome Announc. 2017;5(4):e01476–16.
Article
PubMed Central
PubMed
Google Scholar
Lane DJ. 16S/23S rRNA Sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematic. New York: Wiley; 1991. p. 115–75.
Google Scholar
Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol. 2010;10(1):189.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kurtzman CP, Robnett CJ. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5′ end of the large-subunit (26S) ribosomal DNA gene. J Clin Microbiol. 1997;35(5):1216–23.
Article
CAS
PubMed Central
PubMed
Google Scholar
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41(1):e1.
Article
CAS
PubMed
Google Scholar
Albanese D, Fontana P, De Filippo C, Cavalieri D, Donati C. MICCA: a complete and accurate software for taxonomic profiling of metagenomic data. Sci Rep. 2015;5:9743.
Article
CAS
PubMed Central
PubMed
Google Scholar