Dillon R, Dillon V. The gut of insects: nonpathogenic interactions. Ann Rev Entomol. 2004;49:71–92.
Article
CAS
Google Scholar
Ridley EV, Wong AC, Westmiller S, Douglas AE. Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster. PLoS One. 2012;7(5):e36765. https://doi.org/10.1371/journal.pone.0036765.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robacker DC, Lauzon CR, Patt J, Margara F, Sacchetti P. Attraction of Mexican fruit flies (Diptera: Tephritidae) to bacteria: effects of culturing medium on odour volatiles. J Appl Entomol. 2009;133:155–63.
Article
CAS
Google Scholar
Ben-Yosef M, Pasternak Z, Jurkevitch E, Yuval B. Symbiotic bacteria enable olive flies (Bactrocera oleae) to exploit intractable sources of nitrogen. J Evol Biol. 2014;27:2695–705.
Article
CAS
PubMed
Google Scholar
Douglas AE. Nutritional interactions in insect-microbial symbiosis: aphids and their symbiotic bacteria Buchnera. Ann Rev Entomol. 1998;43:17–37.
Article
CAS
Google Scholar
Behar A, Yuval B, Jurkevitch E. Gut bacterial communities in the Mediterranean fruit fly (Ceratitis capitata) and their impact on host longevity. J Insect Physiol. 2008;54:1377–83.
Article
CAS
PubMed
Google Scholar
Ben-Ami E, Yuval B, Jurkevitch E. Manipulation of the microbiota of mass-reared Mediterranean fruit flies Ceratitis capitata (Diptera: Tephritidae) improves sterile male sexual performance. ISME J. 2010;4:28–37.
Article
PubMed
Google Scholar
Ben-Yosef M, Pasternak Z, Jurkevitch E, Yuval B. Symbiotic bacteria enable olive fly larvae to overcome host defenses. Royal Soc Open Sci. 2017. https://doi.org/10.1098/rsos.150170 or via http://rsos.royalsocietypublishing.org.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lauzon CR, Potter S, Prokopy RJ. Degradation and detoxification of the dihydrochalconephloridzin by Enterobacter agglomerans, a bacterium associated with the apple pest, Rhagoletis pomonella (Walsh) (Diptera:Tephritidae). Environ Entomol. 2003;32(5):953–62.
Article
CAS
Google Scholar
Reddy K, Sharma K, Singh S. Attractancy potential of culturable bacteria from the gut of peach fruit fly, Bactrocera zonata (Saunders). Phytoparasitica. 2014;42:691–8.
Article
Google Scholar
Shi Z, Wang L, Zhang H. Low diversity bacterial community and the trapping activity of metabolites from cultivable bacteria species in the female reproductive system of the Oriental fruit fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae). Int J Mol Sci. 2012;13:6266–78. https://doi.org/10.3390/ijms13056266 PMID: 22754363.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Jin L, Peng T, Zhang H, Chen Q, Hua Y. Identification of cultivable bacteria in the intestinal tract of Bactrocera dorsalis from three different populations and determination of their attractive potential. Pest Manage Sci. 2013;70:80–7.
Article
CAS
Google Scholar
Ben-Yosef M, Jurkevitch E, Yuval B. Effect of bacteria on nutritional status and reproductive success of the Mediterranean fruit fly Ceratitis capitata. Physiol Entomol. 2008;33:145–54.
Article
Google Scholar
Estes AM, Hearn DJ, Burrack HJ, Rempoulakis P, Pierson EA. Prevalence of Candidatus Erwinia dacicola in wild and laboratory olive fruit fly populations and across developmental stages. Environ Entomol. 2012;41:265–74. https://doi.org/10.1603/EN11245 PMID: 22506998.
Article
PubMed
Google Scholar
Sacchetti P, Ghiardi B, Granchietti A, Stefanini FM, Belcari A. Development of probiotic diets for the olive fly: evaluation of their effects on fly longevity and fecundity. Ann Appl Biol. 2014;164:138–50.
Article
CAS
Google Scholar
Prabhakar CS, Sood P, Kanwar SS, Sharma PN, Kumar A, Mehta PK. Isolation and characterization of gut bacteria of fruit fly, Bactrocera tau (Walker). Phytoparasitica. 2013;41:193–201. https://doi.org/10.1007/s12600-012-0278-5.
Article
Google Scholar
Luo M, Zhang H, Chen J, Du Y, He L, Ji Q. Isolation and identification of bacteria in the intestinal tract of adult Bactrocera tau (Walker) (Diptera:Tephritidae). J Fijian Agric Forest Univ (Natural Sci). 2016;45:4–13.
Google Scholar
Yao M, Zhang PC, Xiaohong G, Dan W, Qinge J. Enhanced fitness of a Bactrocera cucurbitae genetic sexing strain based on the addition of gut-isolated probiotics (Enterobacter spec.) to the larval diet. Entomol Exp Appl. 2017. https://doi.org/10.1111/eea.12529.
Article
Google Scholar
Hoi-Sen Y, Sze-Looi S, Kah-Ooi C, Phaik-Eem L. High diversity of bacterial communities in developmental stages of Bactrocera carambolae (Insecta: Tephritidae) revealed by illumina MiSeq sequencing of 16S rRNA gene. Curr Microbiol. 2017;74(9):1076–82.
Article
CAS
Google Scholar
Thaochan N, Drew RAI, Hughes JM, Vijaysegaran S, Chinajariyawong A. Alimentary tract bacteria isolated and identified with API-20E and molecular cloning techniques from Australian tropical fruit flies, Bactrocera cacuminata and B. tryoni. J Insect Sci. 2010;10:131–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuzina LV, Peloquin JJ, Vacek DC, Miller TA. Isolation and identification of bacteria associated with adult laboratory Mexican fruit flies, Anastrepha ludens (Diptera: Tephritidae). Curr Microbiol. 2001;42:290–4.
CAS
PubMed
Google Scholar
Aharon Y, Pasternak Z, Ben Yosef M, Behar A, Lauzon C, Yuval B, et al. Phylogenetic, metabolic, and taxonomic diversities shape Mediterranean fruit fly microbiotas during ontogeny. Appl Environ Microbiol. 2012;79:303–13. https://doi.org/10.1128/AEM.02761-12 PMID: 23104413.
Article
CAS
PubMed
Google Scholar
Behar A, Yuval B, Jurkevitch E. Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata. Mol Ecol. 2005;14:2637–43. https://doi.org/10.1111/j.1365-294X.2005.02615.x PMID:16029466.
Article
CAS
PubMed
Google Scholar
Hamden H, Guerfali MM, Fadhl S, Saidi M, Chevrier C. Fitness improvement of mass-reared sterile males of Ceratitis capitata (Vienna 8 strain) (Diptera: Tephritidae) after gut enrichment with probiotics. J Econ Entomol. 2013;106:641–7. https://doi.org/10.1603/EC12362 PMID: 23786049.
Article
CAS
PubMed
Google Scholar
Behar A, Jurkevitch E, Yuval B. Bringing back the fruit into fruit fly-bacteria interactions. Mol Ecol. 2008;17:1375–86. https://doi.org/10.1111/j.1365-294X.2008.03674.x PMID: 18302695.
Article
CAS
PubMed
Google Scholar
Wang H, Jin L, Zhang H. Comparison of the diversity of the bacterial communities in the intestinal tract of adult Bactrocera dorsalis from three different populations. J Appl Microbiol. 2011;110:1390–401. https://doi.org/10.1111/j.1365-2672.2011.05001.x PMID: 21395953.
Article
CAS
PubMed
Google Scholar
Pramanik MK, Mahin A-A, Khan M, Miah AB. Isolation and identification of mid-gut bacterial community of Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Res J Microbiol. 2014;9:278–86. https://doi.org/10.3923/jm.2014.278.286.
Article
Google Scholar
Hoi Sen Y, Sze-Looi S, Kah OC, Phaik Eem L. Microbiota associated with Bactrocera carambolae and B. dorsalis (Insecta: Tephritidae) revealed by next-generation sequencing of 16S rRNA gene. Meta Gene. 2016;11(C). https://doi.org/10.1016/j.mgene.2016.10.009.
Article
Google Scholar
Nagalakshmi RG, Selvakumar G, Abraham V, Sudhagar S, Ravi M. Diversity of the cultivable gut bacterial communities associated with the fruit flies Bactrocera dorsalis and Bactrocera cucurbitae (Diptera: Tephritidae). Phytoparasitica. 2017. https://doi.org/10.1007/s12600-017-0604-z.
Article
Google Scholar
Andongma AA, Lun W, Yong-Cheng D, Li P, Nicolas D, Jennifer AW, Chang-Ying N. Pyrosequencing reveals a shift in symbiotic bacteria populations across life stages of Bactrocera dorsalis. Sci Rep. 2015;5:9470. https://doi.org/10.1038/srep09470.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daser U, Brandl R. Microbial gut floras of eight species of tephritids. Biol J Linnean Soc. 1992;45:155–65.
Article
Google Scholar
Drew RAI, Lloyd AC. Relationship of fruit flies (Diptera: Tephritidae) and their bacteria to host plants. Ann Entomol Soc Am. 1987;80(5):629–36.
Article
Google Scholar
Sood P, Nath A. Colonization of marker strains of bacteria in fruit fly, Bactrocera tau. Indian J Agric Res. 2005;39(2):103–9.
Google Scholar
Morrow JL, Frommer M, Shearman DCA, Riegler M. The microbiome of field-caught and laboratory adapted Australian tephritid fruit fly species with different host plant use and specialisation. Microb Ecol. 2015;70:498–508. https://doi.org/10.1007/s00248-015-0571-1 PMID: 25666536.
Article
CAS
PubMed
Google Scholar
Niyazi N, Lauzon CR, Shelly TE. Effect of probiotic adult diets on fitness components of sterile male Mediterranean fruit flies (Diptera:Tephritidae) under laboratory and field cage conditions. J Econ Entomol. 2004;97:157–1580.
Article
Google Scholar
Gavriel S, Jurkevitch E, Gazit Y, Yuval B. Bacterially enriched diet improves sexual performance of sterile male Mediterranean fruit flies. J Appl Entomol. 2011;135:564–73. https://doi.org/10.1111/j.1439-0418.2010.01605.x.
Article
Google Scholar
Daifeng C, Zijun G, Markus R, Xi Z, Guangwen L, Xu Y. Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome. 2017;5:13. https://doi.org/10.1186/s40168-017-0236-z.
Article
Google Scholar
Zindel R, Gottlieb Y, Aebi A. Arthropod symbioses: a neglected parameter in pest- and disease-control programmes. J Appl Ecol. 2011;48:864–72.
Article
Google Scholar
Lauzon CR, Potter SE. Description of the irradiated and nonirradiated midgut of Ceratitis capitata Wiedemann (Diptera: Tephritidae) and Anastrepha ludens Loew (Diptera: Tephritidae) used for sterile insect technique. J Pest Sci. 2012;85:217–26.
Article
Google Scholar
Augustinos AA, Kyritsis GA, Papadopoulos NT, Abd-Alla AMM, Carlos C, Bourtzis K. Exploitation of the medfly gut microbiota for the enhancement of sterile insect technique: use of Enterobacter sp. in larval diet-based probiotic applications. PLoS One. 2015;10:e0136459.
Article
PubMed
PubMed Central
CAS
Google Scholar
Allwood AJ, Chinajariyawong A, Drew RAI, Hamacek EL, Hancock DL, Hangsawad C, Jipanin JC, Jirasurat M, Kong KC, Kritsaneepaiboon S, Leong CTS, Vijaysegaran S. Host plants for fruit flies (Diptera: Tephritidae) in South East Asia. Raff Bull Zool Suppl. 1999;7:1–92.
Google Scholar
Nidchaya A, Suksom C, Watchreeporn O, Carmela RG, Gerald F, Anna RM, Sujinda T. The utility of microsatellite DNA markers for the evaluation of area-wide integrated pest management using SIT for the fruit fly, Bactrocera dorsalis (Hendel), control programs in Thailand. Genetica. 2011;139:129–40.
Article
Google Scholar
Dyck VA, Hendrichs JP, Robinson AS, editors. The sterile insect technique: principles and practice in area-wide integrated pest management. Dordrecht: Springer; 2005.
Google Scholar
Luc L, Roger IV, Bruce M, Rudolph P, Jame CP. Evaluation of cue-lure and methyl eugenol solid lure and insecticide dispensers for fruit fly (Diptera:Tephritidae) monitoring and control in Tahiti. Florida Entomol. 2011;94(3):510–6.
Article
Google Scholar
Suksom C, Sunyanee S, Phatchara K, Weera K, Weerawan S, Nongon P. Inter-regional mating compatibility among Bactrocera dorsalis populations in Thailand (Diptera,Tephritidae). Zookeys. 2015;540:299–311.
Article
Google Scholar
Ye H, Jian-Hong L. Population dynamics of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae) in the Kunming area, southwestern China. Insect Sci. 2005;12(5):387–92.
Article
Google Scholar
Antonios AA, Elena D, Aggeliki G-P, Elias DA, Carlos C, George T, Kostas B, Penelope M-T, Antigone Z. Cytogenetic and symbiont analysis of five members of the B. dorsalis complex (Diptera, Tephritidae): no evidence of chromosomal or symbiont-based speciation events. Zookeys. 2015;540:273–98.
Article
Google Scholar
Khan M, Hossain MA, Khan SA, Islam MS, Chang CL. Development of liquid larval diet with modified rearing system for Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) for the application of sterile insect technique. ARPN J Agric Biol Sci. 2011;6:52–7.
Article
Google Scholar
Hasegawa M, Kishino H, Yano T. Dating the human-ape split by a molecular clock of mitochondrial DNA. J Mole Evol. 1985;22:160–74.
Article
CAS
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9. https://doi.org/10.1093/molbev/mst197 PMID: 24132122.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drzewiecka D. Significance and roles of Proteus spp. bacteria in natural environments. Microb Ecol. 2016;72(4):741–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khan M. Potential of liquid larval diets for mass rearing of Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). Aust J Entomol. 2013;52:268–76.
Article
Google Scholar
Capuzzo C, Firrao G, Nazzon L, Squartini A, Girolami V. ‘Candidatus Erwiniadacicola’, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). Int J Syst Evol Microbiol. 2005;55:1641–7.
Article
CAS
Google Scholar
Economopoulos AP, Al-Taweel AA, Bruzzone ND. Larval diet with a starter phase for mass-rearing Ceratitis capitata: substitution and refinement in the use of yeasts and sugars. Entomol Exp Appl. 1990;55:239–46.
Article
Google Scholar
Kaspi R, Mossinson S, Drezner T. Effects of larval diet on development rates and reproductive maturation of male and female Mediterranean fruit flies. Physiol Entomol. 2002;27:29–38.
Article
Google Scholar
Chang CL. Evaluation of yeasts and yeast products in larval and adult diets for the oriental fruit fly, Bactrocera dorsalis, and adult diets for the medfly, Ceratitis capitata, and the melon fly, Bactrocera curcurbitae. J Insect Sci. 2009;9:1–9.
Article
Google Scholar
Chang CL, Vargas RI, Caceres C, Jang E, Cho IK. Development and assessment of a liquid larval diet for Bactrocera dorsalis (Diptera: Tephritidae). Ann Entomol Soc Am. 2006;99:1191–8.
Article
Google Scholar
Tahereh M, Taylor PW, Ponton F. High productivity gel diets for rearing of Queensland fruit fly, Bactrocera tryoni. J Pest Sci. 2015. https://doi.org/10.1007/s10340-016-0813-0.
Article
Google Scholar
Douglas AE. Multi organismal insects: diversity and function of resident microorganisms. Ann Rev Entomol Ann Rev Inc. 2015;60:17–34. https://doi.org/10.1146/annurev-ento-010814-020822 PMID: 25341109.
Article
CAS
Google Scholar
Engel P, Moran NA. The gut microbiota of insects-diversity in structure and function. FEMS Microbiol Rev. 2013;37:699–735. https://doi.org/10.1111/1574-6976.12025 PMID: 23692388.
Article
CAS
PubMed
Google Scholar
Georgios AK, Antonios AA, Carlos C, Kostas B. Med fly gut microbiota and enhancement of the sterile insect technique: similarities and differences of Klebsiella oxytoca and Enterobacter sp. AA26 probiotics during the larval and adult stages of the VIENNA 8D53+ genetic sexing strain. Front Microbiol. 2017;8:2064. https://doi.org/10.3389/fmicb.2017.02064.
Article
Google Scholar
Rull J, Lasa R, Rodriguez C, Ortega R, Velazquez OE, Aluja M. Artificial selection, pre-release diet, and gut symbiont inoculation effects on sterile male longevity for area-wide fruit-fly management. Entomol Exp Appl. 2015;157(3):325–33.
Article
CAS
Google Scholar
Berasategui A, Shukla S, Salem H, Kaltenpoth M. Potential applications of insect symbionts in biotechnology. Appl Microb Biotech. 2016;100:1567–77.
Article
CAS
Google Scholar