Kossmann J, Lloyd J. Understanding and influencing starch biochemistry. Crit Rev Plant Sci. 2000;19(3):171–226.
Article
CAS
Google Scholar
Singh J, Kaur L, McCarthy OJ. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications - a review. Food Hydrocoll. 2007;21(1):1–22.
Article
CAS
Google Scholar
Kuipers AGJ, Jacobsen E, Visser RGF. Formation and deposition of Amylose in the potato-tuber starch granule are affected by the reduction of granule-bound starch Synthase gene-expression. Plant Cell. 1994;6(1):43–52.
Article
CAS
Google Scholar
Schwall GP, Safford R, Westcott RJ, Jeffcoat R, Tayal A, Shi YC, Gidley MJ, Jobling SA. Production of very-high-amylose potato starch by inhibition of SBE a and B. Nat Biotechnol. 2000;18(5):551–4.
Article
CAS
Google Scholar
Christiansen C, Abou Hachem M, Janecek S, Vikso-Nielsen A, Blennow A, Svensson B. The carbohydrate-binding module family 20-diversity, structure, and function. FEBS J. 2009;276(18):5006–29.
Article
CAS
Google Scholar
Guillen D, Sanchez S, Rodriguez-Sanoja R. Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol. 2010;85(5):1241–9.
Article
CAS
Google Scholar
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The carbohydrate-active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37:D233–8.
Article
CAS
Google Scholar
Valk V. Lammerts van Bueren a, van der Kaaij RM, Dijkhuizen L: carbohydrate-binding module 74 is a novel starch-binding domain associated with large and multidomain alpha-amylase enzymes. FEBS J. 2016;283(12):2354–68.
Article
CAS
Google Scholar
Machovic M, Janecek S. The evolution of putative starch-binding domains. FEBS Lett. 2006;580(27):6349–56.
Article
CAS
Google Scholar
Svensson B, Jespersen H, Sierks MR, Macgregor EA. Sequence homology between putative raw-starch binding domains from different starch-degrading enzymes. Biochem J. 1989;264(1):309–11.
Article
CAS
Google Scholar
Rodriguez-Sanoja R, Oviedo N, Sanchez S. Microbial starch-binding domain. Curr Opin Microbiol. 2005;8(3):260–7.
Article
CAS
Google Scholar
Howitt CA, Rahman S, Morell MK. Expression of bacterial starch-binding domains in Arabidopsis increases starch granule size. Funct Plant Biol. 2006;33(3):257–66.
Article
CAS
Google Scholar
Ji Q, Oomen RJF, Vincken JP, Bolam DN, Gilbert HJ, Suurs LCJM, Visser RGF. Reduction of starch granule size by expression of an engineered tandem starch-binding domain in potato plants. Plant Biotechnol J. 2004;2(3):251–60.
Article
CAS
Google Scholar
Ji Q, Vincken JP, Suurs LCJM, Visser RGF. Microbial starch-binding domains as a tool for targeting proteins to granules during starch biosynthesis. Plant Mol Biol. 2003;51(5):789–801.
Article
CAS
Google Scholar
Huang XF, Nazarian-Firouzabadi F, Vincken JP, Ji Q, Suurs LC, Visser RG, Trindade LM. Expression of an engineered granule-bound Escherichia Coli glycogen branching enzyme in potato results in severe morphological changes in starch granules. Plant Biotechnol J. 2013;11(4):470–9.
Article
CAS
Google Scholar
Huang XF, Nazarian-Firouzabadi F, Vincken JP, Ji Q, Visser RG, Trindade LM. Expression of an amylosucrase gene in potato results in larger starch granules with novel properties. Planta. 2014;240(2):409–21.
Article
CAS
Google Scholar
Huang XF, Vincken JP, Visser RG, Trindade LM. Production of heterologous storage polysaccharides in potato plants. Annual Plant Reviews: Plant Polysaccharides, Biosynthesis and Bioengineering. 2010;41:389–408.
Article
Google Scholar
Xu X, Huang XF, Visser RG, Trindade LM. Engineering potato starch with a higher phosphate content. PLoS One. 2017;12(1):e0169610.
Article
Google Scholar
Valk V, Eeuwema W, Sarian FD, van der Kaaij RM, Dijkhuizen L. Degradation of granular starch by the bacterium microbacterium aurum strain B8.A involves a modular alpha-amylase enzyme system with FNIII and CBM25 domains. Appl Environ Microbiol. 2015;81(19):6610–20.
Article
CAS
Google Scholar
Boraston AB, Healey M, Klassen J, Ficko-Blean E, van Bueren AL, Law V. A structural and functional analysis of alpha-glucan recognition by family 25 and 26 carbohydrate-binding modules reveals a conserved mode of starch recognition. J Biol Chem. 2006;281(1):587–98.
Article
CAS
Google Scholar
Sigurskjold BW, Svensson B, Williamson G, Driguez H. Thermodynamics of Ligand-binding to the starch-binding domain of Glucoamylase from Aspergillus-Niger. Eur J Biochem. 1994;225(1):133–41.
Article
CAS
Google Scholar
Sorimachi K, LeGalCoeffet MF, Williamson G, Archer DB, Williamson MP. Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Structure. 1997;5(5):647–61.
Article
CAS
Google Scholar
Morris VJ, Gunning AP, Faulds CB, Williamson G, Svensson B. AFM images of complexes between amylose and Aspergillus niger glucoamylase mutants, native, and mutant starch binding domains: a model for the action of glucoamylase. Starch-Starke. 2005;57(1):1–7.
Article
CAS
Google Scholar
Nazarian FF, Vincken JP, Ji Q, Suurs LC, Buleon A, Visser RG. Accumulation of multiple-repeat starch-binding domains (SBD2-SBD5) does not reduce amylose content of potato starch granules. Planta. 2007;225(4):919–33.
Article
Google Scholar
Visser RGF. Regeneration and transformation of potato by Agrobacterium tumefaciens. In: Lindsey K, editor. Plant Tissue Culture Manual, vol. B5. Dordrecht: Kluwer; 1991. p. 1–9.
Google Scholar
Murashige T, Skoog F. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant. 1962;15:473–97.
Article
CAS
Google Scholar
Nazarian FF, Vincken JP, Ji Q, Suurs LCJM, Visser RGF. Expression of an engineered granule-bound Escherichia Coli maltose acetyltransferase in wild-type and amf potato plants. Plant Biotechnol J. 2007;5(1):134–45.
Article
Google Scholar
Garbarino JE, Belknap WR. Isolation of a Ubiquitin-ribosomal protein gene (Ubi3) from potato and expression of its promoter in transgenic plants. Plant Mol Biol. 1994;24(1):119–27.
Article
CAS
Google Scholar
Hovenkamp-Hermelink JHM, Devries JN, Adamse P, Jacobsen E, Witholt B, Feenstra WJ. Rapid estimation of the Amylose Amylopectin ratio in small amounts of tuber and leaf tissue of the potato. Potato Res. 1988;31(2):241–6.
Article
CAS
Google Scholar