Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plan Biol. 2004;55:373–99.
Article
CAS
Google Scholar
Sunkar R, Chinnusamy V, Zhu J, Zhu JK. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci. 2007;12:301–9.
Article
CAS
Google Scholar
Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7:405–10.
Article
CAS
Google Scholar
Hofer T, Badouard C, Bajak E, Ravanat JL, Mattsson A, et al. Hydrogen peroxide causes greater oxidation in cellular RNA than DNA. Biol Chem. 2005;386:333–7.
Article
CAS
Google Scholar
Møller IM, Jensen PE, Hansson A. Oxidative modifications to cellular components in plants. Annu Rev Plant Biol. 2007;58:459–81.
Article
Google Scholar
Liu H, Zhang XX, Takano T, Liu SK. Characterization of a PutCAX1 gene from Puccinellia tenuiflora that confers Ca2+ and Ba2+ tolerance in yeast. Biochem Biophys Res Commun. 2009;383:392–6.
Article
CAS
Google Scholar
Asada K, Takahashi M. Photoinhibition. In: Kyle DJ, Osmond CB, Arntzen CJ, editors. Production and scavenging of active oxygen in chloroplasts. Elsevier: Amsterdam; 1987. p. 227–87.
Google Scholar
Bowler C, Montagu MV, Montagu DD. Superoxide dismutases and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol. 1992;43:83–116.
Article
CAS
Google Scholar
Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, et al. Catalase is a sink for H2O2 and is indispensable for stress defence in C-3 plants. EMBO J. 1997;16:4806–16.
Article
CAS
Google Scholar
Noctor G, Foyer CH. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol. 1998;49:249–79.
Article
CAS
Google Scholar
Creissen G, Firmin J, Fryer M, Kular B, Leyland N, Reynolds H, et al. Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. Plant Cell. 1999;11:1277–92.
Article
CAS
Google Scholar
Conklin PL, Willlams EH, Robert RL. Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci. 1996;93:9970–4.
Article
CAS
Google Scholar
Smirnoff N. Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol. 2000;3:229–35.
Article
CAS
Google Scholar
Li F, Wu QY, Sun YL, Wang LY, Yang XH, Meng QW. Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses. Planta. 2010;139:421–34.
CAS
Google Scholar
Ma F, Wang L, Samma MK, Xie Y, Wang R, Wang J, et al. Interaction between HY1 and H2O2 in auxin-induced lateral root formation in Arabidopsis. Plant Mol Biol. 2014;85:49–61.
Article
CAS
Google Scholar
Karkonen A, Fry SC. Effect of ascorbate and its oxidation products on H2O2 production in cell-suspension cultures of Picea abies and in the absence of cells. J Exp Bot. 2006;57:1633–44.
Article
Google Scholar
Wang Z, Xiao Y, Chen W, Tang K, Zhang L. Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. J Integr Plant Biol. 2010;52:400–9.
Article
CAS
Google Scholar
Yin L, Wang S, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W, et al. Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta. 2010;231:609–21.
Article
CAS
Google Scholar
Loewus FA. Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. Phytochemistry. 1999;52:193–210.
Article
CAS
Google Scholar
Davey MW, Gilot C, Persiau G, Ostergaard J, Han Y, Bauw GC, et al. Ascorbate biosynthesis in Arabidopsis cell suspension culture. Plant Physiol. 1999;121:535–43.
Article
CAS
Google Scholar
Lorence A, Chevone BI, Mendes P, Nessler CL. Myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol. 2004;134:1200–5.
Article
CAS
Google Scholar
Wheeler GL, Jones MA, Smirnoff N. The biosynthetic pathway of vitamin C in higher plants. Nature. 1998;393:365–9.
Article
CAS
Google Scholar
Conklin PL, DePaolo D, Wintle B, Schatz C, Buckenmeyer G. Identification of Arabidopsis VTC3 as a putative and unique dual function protein kinase:protein phosphatase involved in the regulation of the ascorbic acid pool in plants. J Exp Bot. 2013;64:2793–804.
Article
CAS
Google Scholar
Agius F, Gonzalez-Lamothe R, Caballero JL, Munosz-Blanco J, Botell MA, Valpuesta V. Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat Biotechnol. 2003;21:177–81.
Article
CAS
Google Scholar
Bulley SM, Rassam M, Hoser D, Otto W, Schunemann N, Wright M, et al. Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-Lgalactose guanyltransferase is a major control point of vitamin C biosynthesis. J Exp Bot. 2009;60:765–78.
Article
CAS
Google Scholar
Bulley S, Wright M, Rommens C, Yan H, Rassam M, Lin-Wang K, et al. Enhancing ascorbate in fruits and tubers through over-expression of the Lgalactose pathway gene GDP-L-galactose phosphorylase. Plant Biotechnol J. 2011;10:390–7.
Article
Google Scholar
Liu W, An HM, Yang M. Overexpression of Rosa roxburghii Lgalactono-1,4-lactone dehydrogenase in tobacco plant enhances ascorbate accumulation and abiotic stress tolerance. Acta Physiol Plant. 2013;35:1617–24.
Article
CAS
Google Scholar
Tokuna T, Miyahara K, Tabata K, Esaka M. Generation and properties of ascorbic acid-over-producing transgenic tobacco cells expressing sense RNA for L-galactono-1,4-lactone dehydrogenase. Planta. 2005;220:854–63.
Article
Google Scholar
Naqvi S, Zhu C, Farre G, Ramessar K, Bassie L, Breitenbach J, et al. Transgenic multivitamin corn through biofortification of endosperm with three vitamins repre senting three distinct metabolic pathways. Proc Natl Acad Sci. 2009;106:7762–7.
Article
CAS
Google Scholar
Hemavathi, Upadhyaya CP, Akula N, Young KE, Chun SC, Kim DH, et al. Enhanced ascorbic acid accumulation in transgenic potato confers tolerance to various abiotic stresses. Biotechnol Lett. 2010;32:321–30.
Article
CAS
Google Scholar
Bao G, Zhuo C, Qian C, Xiao T, Guo Z, Lu S. Co-expression of NCED and ALO improves vitamin C level and tolerance to drought and chilling in transgenic tobacco and stylo plants. Plant Biotechnol J. 2016;1:206–14.
Article
Google Scholar
Gietz RD, Schiestl RH, Willems AR, Woods RA. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast. 1995;11:355–60.
Article
CAS
Google Scholar
Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–43.
Article
CAS
Google Scholar
Kumar S, Tamura K, Nei M. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence aligament. Brief Bioinform. 2004;5:150–63.
Article
CAS
Google Scholar
Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press; 1989.
Google Scholar
Nag S, Saha K, Choudhun MA. A rapid and sensitive assay method for measuring amine oxidase based on hydrogen peroxide-titanium complex formation. Plant Sci. 2000;157:157–63.
Article
CAS
Google Scholar
Bu Y, Sun B, Zhou A, Zhang X, Lee I, Liu S. Identification and characterization of a PutAMT1;1 gene from Puccinellia tenuiflora. Plos One. 2013;8:e83111.
Article
Google Scholar
Seidel T, Schnitzer D, Golldack D, Sauer M, Dieitz KJ. Organelle-specific isoenzymes of plant V-ATPase as revealed by in vivo-FRET analysis. BMC Cell Biol. 2008;9:28.
Article
Google Scholar
Finkelstein RR, Gampala SS, Rock CD. Abscisic acid signaling in seeds and seedlings. Plant Cell. 2002;14:S15–45.
CAS
Google Scholar
Fedoroff NV. Cross-talk in abscisic acid signaling. Sci STKE. 2002;140:re10.
Google Scholar
Clemen S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta. 2001;212:475–86.
Article
Google Scholar
Yamamoto Y, Kobayashi Y, Devi SR, Matsumoto H. Aluminum toxicity is associated with mltochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol. 2002;128:63–72.
Article
CAS
Google Scholar
Kovtun Y, Chiu WL, Tena G, Sheen J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci. 2000;97:2940–5.
Article
CAS
Google Scholar
Wang J, Zhang H, Allen RD. Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol. 1999;40:725–32.
Article
CAS
Google Scholar
Hwang JE, Lim CJ, Chen H, Je J, Song C, Lim CO. Overexpression of Arabidopsis dehydration-responsive element-binding protein 2C confers tolerance tooxidative stress. Mol Cells. 2012;33:135–40.
Article
CAS
Google Scholar
Singh AK, Kumar R, Pareek A, Sopory SK, Singla-Pareek SL. Overexpression of rice CBS domain containing protein improves salinity, oxidative, and heavy metal tolerance in transgenic tobacco. Mol Biotechnol. 2012;52:205–16.
Article
CAS
Google Scholar
Wang F, Zang XS, Kabir MR, Liu KL, Liu ZS, Ni ZF, et al. A wheat lipid transfer protein 3 could enhance the basal thermotolerance and oxidative stress resistance of Arabidopsis. Gene. 2014;550:18–26.
Article
CAS
Google Scholar
Smirnoff N, Wheeler GL. Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol. 2000;35:291–314.
Article
CAS
Google Scholar
Zhang Z, Wang J, Zhang R, Huang R. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. Plant J. 2012;71:273–87.
Article
CAS
Google Scholar
Foyer CH, Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal. 2009;11:861–905.
Article
CAS
Google Scholar
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48:909–30.
Article
CAS
Google Scholar
Kwon SY, Choi SM, Ahn YO, Lee HS, Lee HB, Park YM, et al. Enhanced stress-tolerance of transgenic plants expressing a human dehydroascorbate reductase gene. J Plant Physiol. 2003;160:347–53.
Article
CAS
Google Scholar