Anthrax Documents. 2010, 2/15/2011 edn, [http://www.justice.gov/amerithrax/]
Leski TA, Lin B, Malanoski AP, Wang Z, Long NC, Meador CE, Barrows B, Ibrahim S, Hardick JP, Aitichou M, et al: Testing and Validation of High Density Resequencing Microarray for Broad Range Biothreat Agents Detection. Plos One. 2009, 4 (8):
Yang S, Rothman RE, Hardick J, Kuroki M, Hardick A, Doshi V, Ramachandran P, Gaydos CA: Rapid polymerase chain reaction-based screening assay for bacterial biothreat agents. Academic Emergency Medicine. 2008, 15 (4): 388-392. 10.1111/j.1553-2712.2008.00061.x.
Article
Google Scholar
Lim DV, Simpson JM, Kearns EA, Kramer MF: Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clinical Microbiology Reviews. 2005, 18 (4): 583-10.1128/CMR.18.4.583-607.2005. +
Article
CAS
Google Scholar
Ngom B, Guo YC, Wang XL, Bi DR: Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Analytical and Bioanalytical Chemistry. 2010, 397 (3): 1113-1135. 10.1007/s00216-010-3661-4.
Article
CAS
Google Scholar
Posthuma-Trumpie GA, Korf J, van Amerongen A: Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey. Analytical and Bioanalytical Chemistry. 2009, 393 (2): 569-582. 10.1007/s00216-008-2287-2.
Article
CAS
Google Scholar
McAteer K, Simpson CE, Gibson TD, Gueguen S, Boujtita M, El Murr N: Proposed model for shelf-life prediction of stabilised commercial enzyme-based systems and biosensors. J Mol Catal B-Enzym. 1999, 7 (1-4): 47-56. 10.1016/S1381-1177(99)00020-X.
Article
CAS
Google Scholar
Leuvering JHW, Thal P: Colloidal gold particles coated with monoclonal-antibodies-preparation and shelf-life. Ultramicroscopy. 1984, 14 (4): 412-413.
Article
Google Scholar
Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R: Naturally-Occurring Antibodies Devoid of Light-Chains. Nature. 1993, 363 (6428): 446-448. 10.1038/363446a0.
Article
CAS
Google Scholar
Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, Lee T, Pope SH, Riordan GS, Whitlow M: Single-chain antigen-binding proteins. Science. 1988, 242 (4877): 423-426. 10.1126/science.3140379.
Article
CAS
Google Scholar
Goldman ER, Anderson GP, Liu JL, Delehanty JB, Sherwood LJ, Osborn LE, Cummins LB, Hayhurst A: Facile generation of heat-stable antiviral and antitoxin single domain antibodies from a semisynthetic llama library. Analytical Chemistry. 2006, 78 (24): 8245-8255. 10.1021/ac0610053.
Article
CAS
Google Scholar
van der Linden RHJ, Frenken LGJ, de Geus B, Harmsen MM, Ruuls RC, Stok W, de Ron L, Wilson S, Davis P, Verrips CT: Comparison of physical chemical properties of llama V-HH antibody fragments and mouse monoclonal antibodies. Biochim Biophys Acta-Protein Struct Molec Enzym. 1999, 1431 (1): 37-46. 10.1016/S0167-4838(99)00030-8.
Article
CAS
Google Scholar
Wesolowski J, Alzogaray V, Reyelt J, Unger M, Juarez K, Urrutia M, Cauerhff A, Danquah W, Rissiek B, Scheuplein F, et al: Single domain antibodies: promising experimental and therapeutic tools in infection and immunity. Medical Microbiology and Immunology. 2009, 198 (3): 157-174. 10.1007/s00430-009-0116-7.
Article
CAS
Google Scholar
Goldman ER, Anderson GP, Conway J, Sherwood LJ, Fech M, Vo B, Liu JL, Hayhurst A: Thermostable Llama Single Domain Antibodies for Detection of Botulinum A Neurotoxin Complex. Analytical Chemistry. 2008, 80 (22): 8583-8591. 10.1021/ac8014774.
Article
CAS
Google Scholar
Ladenson RC, Crimmins DL, Landt Y, Ladenson JH: Isolation and characterization of a thermally stable recombinant anti-caffeine heavy-chain antibody fragment. Analytical Chemistry. 2006, 78 (13): 4501-4508. 10.1021/ac058044j.
Article
CAS
Google Scholar
Alvarez-Rueda N, Behar G, Ferre V, Pugniere M, Roquet F, Gastinel L, Jacquot C, Aubry J, Baty D, Barbet J, et al: Generation of llama single-domain antibodies against methotrexate, a prototypical hapten. Molecular Immunology. 2007, 44 (7): 1680-1690. 10.1016/j.molimm.2006.08.007.
Article
CAS
Google Scholar
Sherwood LJ, Osborn LE, Carrion R, Patterson JL, Hayhurst A: Rapid assembly of sensitive antigen-capture assays for Marburg virus, using in vitro selection of llama single-domain antibodies, at biosafety level 4. J Infect Dis. 2007, 196: S213-S219. 10.1086/520586.
Article
CAS
Google Scholar
Bouhaouala-Zahar B, Hmila I, Saerens D, Ben Abderrazek R, Vincke C, Abidi N, Benlasfar Z, Govaert J, El Ayeb M, Muyldermans S: A bispecific nanobody to provide full protection against lethal scorpion envenoming. Faseb Journal. 2010, 24 (9): 3479-3489. 10.1096/fj.09-148213.
Article
Google Scholar
Pant N, Marcotte H, Hermans P, Bezemer S, Frenken L, Johansen K, Hammarstrom L: Lactobacilli producing bispecific llama-derived anti-rotavirus proteins in vivo for rotavirus-induced diarrhea. Future Microbiology. 2011, 6 (5): 583-593. 10.2217/fmb.11.32.
Article
CAS
Google Scholar
Verrips T, Koh WWL, Steffensen S, Gonzalez-Pajuelo M, Hoorelbeke B, Gorlani A, Szynol A, Forsman A, Aasa-Chapman MMI, de Haard H, et al: Generation of a Family-specific Phage Library of Llama Single Chain Antibody Fragments That Neutralize HIV-1. J Biol Chem. 2010, 285 (25): 19116-19124. 10.1074/jbc.M110.116699.
Article
Google Scholar
Adams H, Brummelhuis W, Maassen B, van Egmond N, El Khattabi M, Detmers F, Hermans P, Braam B, Stam J, Verrips T: Specific immuno capturing of the staphylococcal superantigen toxic-shock syndrome toxin-1 in plasma. Biotechnol Bioeng. 2009, 104 (1): 143-151. 10.1002/bit.22365.
Article
CAS
Google Scholar
Ryan S, Kell AJ, van Faassen H, Tay LL, Simard B, MacKenzie R, Gilbert M, Tanha J: Single-Domain Antibody-Nanoparticles: Promising Architectures for Increased Staphylococcus aureus Detection Specificity and Sensitivity. Bioconjugate Chemistry. 2009, 20 (10): 1966-1974. 10.1021/bc900332r.
Article
CAS
Google Scholar
Huang IY, Bergdoll MS: The primary structure of staphylococcal enterotoxin B. 3. The cyanogen bromide peptides of reduced and aminoethylated enterotoxin B, and the complete amino acid sequence. J Biol Chem. 1970, 245 (14): 3518-3525.
CAS
Google Scholar
Swain MD, Anderson GP, Zabetakis D, Bernstein RD, Liu JL, Sherwood LJ, Hayhurst A, Goldman ER: Llama-derived single-domain antibodies for the detection of botulinum A neurotoxin. Analytical and Bioanalytical Chemistry. 2010, 398 (1): 339-348. 10.1007/s00216-010-3905-3.
Article
CAS
Google Scholar
Anderson GP, Liu JL, Hale ML, Bernstein RD, Moore M, Swain MD, Goldman ER: Development of Antiricin Single Domain Antibodies Toward Detection and Therapeutic Reagents. Analytical Chemistry. 2008, 80 (24): 9604-9611. 10.1021/ac8019398.
Article
CAS
Google Scholar
Conway JO, Sherwood LJ, Collazo MT, Garza JA, Hayhurst A: Llama Single Domain Antibodies Specific for the 7 Botulinum Neurotoxin Serotypes as Heptaplex Immunoreagents. Plos One. 2010, 5: (1)-
Article
Google Scholar
Perez JMJ, Renisio JG, Prompers JJ, van Platerink CJ, Cambillau C, Darbon H, Frenken LGJ: Thermal unfolding of a llama antibody fragment: A two-state reversible process. Biochemistry. 2001, 40 (1): 74-83. 10.1021/bi0009082.
Article
CAS
Google Scholar
Dumoulin M, Conrath K, Van Meirhaeghe A, Meersman F, Heremans K, Frenken LGJ, Muyldermans S, Wyns L, Matagne A: Single-domain antibody fragments with high conformational stability. Protein Science. 2002, 11 (3): 500-515.
Article
CAS
Google Scholar
Davies J, Riechmann L: Antibody Vh Domains as Small Recognition Units. Bio-Technology. 1995, 13 (5): 475-479.
Article
CAS
Google Scholar
McLaren RD, Prosser CG, Grieve RC, Borissenko M: The use of caprylic acid for the extraction of the immunoglobulin fraction from egg yolk of chickens immunised with ovine alpha-lactalbumin. J Immunol Methods. 1994, 177 (1-2): 175-184. 10.1016/0022-1759(94)90154-6.
Article
CAS
Google Scholar
Anderson GP, Ortiz-Vera YA, Czarnecki J, BaoHan Vo B, ER G: Evaluation of llama anti-botulinum toxin polyclonal IgG subclasses. The Botulinum Journal. 2008, 1: 100-115. 10.1504/TBJ.2008.018953.
Article
Google Scholar
van der Linden RHJ, de Geus B, Frenken LGJ, Peters H, Verrips CT: Improved production and function of llama heavy chain antibody fragments by molecular evolution. Journal of Biotechnology. 2000, 80 (3): 261-270. 10.1016/S0168-1656(00)00274-1.
Article
CAS
Google Scholar
Meddeb-Mouelhi F, Bouhaouala-Zahar B, Benlasfar Z, Hammadi M, Mejri T, Moslah M, Karoui H, Khorchani T, El Ayeb M: Immunized camel sera and derived immunoglobulin subclasses neutralizing Androctonus australis hector scorpion toxins. Toxicon. 2003, 42 (7): 785-791. 10.1016/j.toxicon.2003.10.021.
Article
CAS
Google Scholar
Daley LP, Gagliardo LF, Duffy MS, Smith MC, Appleton JA: Application of monoclonal antibodies in functional and comparative investigations of heavy-chain immunoglobulins in new world camelids. Clin Diagn Lab Immunol. 2005, 12 (3): 380-386.
CAS
Google Scholar
Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S: Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Letters. 1997, 414 (3): 521-526. 10.1016/S0014-5793(97)01062-4.
Article
CAS
Google Scholar
Griffiths AD, Malmqvist M, Marks JD, Bye JM, Embleton MJ, McCafferty J, Baier M, Holliger KP, Gorick BD, Hughes-Jones NC, et al: Human anti-self antibodies with high specificity from phage display libraries. EMBO J. 1993, 12 (2): 725-734.
CAS
Google Scholar
Hayhurst A, Happe S, Mabry R, Koch Z, Iverson BL, Georgiou G: Isolation and expression of recombinant antibody fragments to the biological warfare pathogen Brucella melitensis. Journal of Immunological Methods. 2003, 276 (1-2): 185-196. 10.1016/S0022-1759(03)00100-5.
Article
CAS
Google Scholar