Haas CN, Rose JB, Gerba C, Regli S: Risk assessment of virus in drinking water. Risk Anal. 1993, 13: 545-552.
Article
CAS
Google Scholar
Fong TT, Lipp EK: Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools. Microbiol Mol Biol Rev. 2005, 69: 357-371.
Article
CAS
Google Scholar
Gerba CP, Rose JB, Haas CN, Crabtree KD: Waterborne rotavirus: A risk assessment. Water Res. 1996, 30: 2929-2940.
Article
CAS
Google Scholar
Mara DD, Sleigh PA, Blumenthal UJ, Carr RM: Health risks in wastewater irrigation: comparing estimates from quantitative microbial risk analyses and epidemiological studies. J Water Health. 2007, 5 (1): 39-50.
Article
CAS
Google Scholar
Rose JB, Sobsey MD: Quantitative risk assessment for viral contamination of shellfish and coastal waters. J Food Protect. 1993, 56 (12): 1043-1050.
Google Scholar
Pinto RM, Costafreda MI, Bosch A: Risk assessment in shellfish-borne outbreaks of Hepatitis A. Appl Environ Microbiol. 2009, 75 (23): 7350-7355.
Article
CAS
Google Scholar
Bosch A, Guix S, Sano D, Pinto RM: New tools for the study and direct surveillance of viral pathogens in water. Curr Opin Biotech. 2008, 19: 295-301.
Article
CAS
Google Scholar
Cliver DO: Capsid and infectivity in virus detection. Food Environ Virol. 2009, 1: 123-128.
Article
CAS
Google Scholar
Rodriguez RA, Pepper IL, Gerba CP: Application of PCR-based methods to assess the infectivity of enteric viruses in environmental samples. Appl Environ Microbiol. 2009, 75 (2): 297-307.
Article
CAS
Google Scholar
Costafreda MI, Bosch A, Pinto RM: Development, evaluation, and standardization of a real-time TaqMan reverse transcription-PCR assay for quantification of hepatitis A virus in clinical and shellfish samples. Appl Environ Microbiol. 2006, 72: 3846-3855.
Article
CAS
Google Scholar
Galil KHAE, Sokkary MAE, Kheira SM, Salazar AM, Yates MV, Chen W, Mulchandani A: Combined immunomagnetic separation-molecular beacon-reverse transcription-PCR assay for detection of hepatitis A virus from environmental samples. Appl Environ Microbiol. 2004, 70: 4371-4374.
Article
Google Scholar
Bosch A: Human enteric viruses in the water environment: a minireview. Internatl Microbiol. 1998, 1: 191-196.
CAS
Google Scholar
Mattison K, Bidawid S: Analytical methods for food and environmental viruses. Food Environ Virol. 2009, 1: 107-122.
Article
Google Scholar
Sano D, Matsuo T, Omura T: Virus-binding proteins recovered from bacterial culture derived from activated sludge by affinity chromatography assay using a viral capsid peptide. Appl Environ Microbiol. 2004, 70 (6): 3434-3442.
Article
CAS
Google Scholar
Sano D, Omura T: Construction of a cloning system for the mass production of virus-binding protein for poliovirus type 1. Appl Environ Microbiol. 2005, 71: 2608-2615.
Article
CAS
Google Scholar
Sano D, Wada K, Imai T, Masago Y, Omura T: Norovirus-binding proteins recovered from activated sludge micro-organisms with an affinity to a noroviral capsid peptide. J Appl Microbiol. 2010, 109: 1923-1928.
Article
CAS
Google Scholar
Boder ET, Midelfort KS, Wittrup KD: Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. PNAS. 2000, 97: 10701-10705.
Article
CAS
Google Scholar
Howkins RE, Russel SJ, Winter G: Selection of phage antibodies by binding affinity. J Mol Biol. 1992, 226: 889-896.
Article
Google Scholar
Pidard D, Montgomery RR, Bennett JS, Kunicki TJ: Interaction of AP-2, a monoclonal antibody specific for the human platelet glycoprotein IIb-IIIa complex, with intact platelets. J Biol Chem. 1983, 258: 12582-12586.
CAS
Google Scholar
Hutchens TW, Yip TT, Porath J: Protein interaction with immobilized ligands: quantitative analyses of equilibrium partition data and comparison with analytical chromatographic approaches using immobilized metal affinity adsorbents. Anal Biochem. 1988, 170: 168-182.
Article
CAS
Google Scholar
Hutchens TW, Yip TT: Protein interactions with immobilized transition metal ions: Quantitative evaluations of variations in affinity and binding capacity. Anal Biochem. 1990, 191: 160-168.
Article
CAS
Google Scholar
Skidmore GL, Horstmann BJ, Chase HA: Modelling single-component protein adsorption to the cation exchanger S Sepharose FF. J Chromatogr A. 1990, 498: 113-128.
Article
CAS
Google Scholar
Parker TD, Kitamoto N, Tanaka T, Hutson AM, Estes MK: Identification of genogroup I and genogroup II broadly reactive epitopes on the norovirus capsid. J Virol. 2005, 79: 7402-7409.
Article
CAS
Google Scholar
Prasad BVV, Hardy ME, Dokland T, Bella J, Rossman MG, Estes MK: X-ray crystallographic structure of the Norwalk virus capsid. Science. 1999, 286: 287-290.
Article
CAS
Google Scholar
He Y, Bowman VD, Mueller S, Bator CM, Bella J, Peng X, Baker TS, Wimmer E, Kuhn RJ, Rossmann MG: Interaction of the poliovirus receptor with poliovirus. PNAS. 2000, 97 (1): 79-84.
Article
CAS
Google Scholar
Dormitzer PR, Nason EB, Prasad BBV, Harrison SC: Structural rearrangements in the membrane penetration protein of a non-enveloped virus. Nature. 2004, 430: 1053-1058.
Article
CAS
Google Scholar
Kiser PD, Lodowski DT, Palczewski K: Purification, crystallization and structure determination of native GroEL from Escherichia coli lacking bound potassium ions. Acta Cryst F. 2007, 63: 457-461.
Article
CAS
Google Scholar
Lesk AM: Introduction to Protein Science, Architecture, Functions, and Genomics. 2004, Oxford: Oxford University Press
Google Scholar
Ewalt KL, Hendrick JP, Houry WA, Hartl FU: In vivo observation of polypeptide flux through thebacterial chaperonin system. Cell. 1997, 90: 491-500.
Article
CAS
Google Scholar
Kawata Y, Nosaka K, Hongo K, Mizobata T, Nagai J: Chaperonin GroEL and ADP facilitate the folding of various proteins and protect against heat inactivation. FEBS Lett. 1994, 345: 229-232.
Article
CAS
Google Scholar
Chaudhry C, Horwich AL, Brunger AT, Adams PD: Exploring the structural dynamics of the E.coli chaperonin GroEL using translation-libration-screw crystallographic refinement of intermediate states. J Mol Biol. 2004, 342: 229-245.
Article
CAS
Google Scholar
Marchenko NY, Marchenkov VV, Kaysheva AL, Kashparov IA, Kotova NV, Kaliman PV, Semisotnov GV: Affinity chromatorgraphy of GroEL chaperonin based on denatured proteins: role of electrostatic interactions in regulation of GroEL affinity for protein substrates. Biochem. 2006, 71: 1357-1364.
CAS
Google Scholar
Prasad BVV, Hardy ME, Estes MK: Structural studies of recombinant Norwalk capsids. J Infect Dis. 2000, 181: S317-S321.
Article
CAS
Google Scholar
Sigler PB, Xu Z, Rye HS, Burston SG, Fenton WA, Horwich AL: Structure and function in GroEL-mediated protein folding. Annu Rev Biochem. 1998, 67: 581-608.
Article
CAS
Google Scholar
Hogle JM, Chow M, Filman DJ: Three-dimensional structure of poliovirus at 2.9 Å resolution. Science. 1985, 229: 1358-1365.
Article
CAS
Google Scholar
Racaniello VR: Early events in poliovirus infection: Virus-receptor interactions. PNAS. 1996, 93: 11378-11381.
Article
CAS
Google Scholar
Prasad BVV, Burns JW, Marietta E, Estes MK, Chiu W: Localization of VP4 neutralization sites in rotavirus by three-dimensional cryo-electron microscopy. Nature. 1990, 343: 476-479.
Article
CAS
Google Scholar
Quiel A, Jurgen B, Piechotta G, Le Foll AP, Ziebandt AK, Kohler C, Koster D, Engelmann S, Erck C, Hintsche R, Wehland J, Hecker M, Schweder T: Electrical protein array chips for the detection of staphylococcal virulence factors. Appl Microbiol Biotechnol. 2010, 85: 1619-1627.
Article
CAS
Google Scholar
Jose J: Autodisplay: efficient bacterial surface display of recombinant proteins. Appl Microbiol Biotechnol. 2006, 69: 607-614.
Article
CAS
Google Scholar
Xiao X, Yang X, Liu T, Chan Z, Chen L, Li H, Deng L: Preparing a highly specific inert immunomolecular-magnetic beads for rapid detection and separation of S. aureus and group G Streptococcus. Appl Microbiol Biotechnol. 2007, 75: 1209-1216.
Article
CAS
Google Scholar
Cannon JL, Vinjé J: Histo-blood group antigen assay for detecting noroviruses in water. Appl Environ Microbiol. 2008, 74: 6818-6819.
Article
CAS
Google Scholar
Tian P, Engelbrektson A, Mandrell R: Two-log increase in sensitivity for detection of norovirus in complex samples by concentration with porcine gastric mucin conjugated to magnetic beads. Appl Environ Microbiol. 2008, 74: 6818-6819.
Article
Google Scholar
Da Silva AK, Kavanagh OV, Estes MK, Elimelech M: Adsorption and aggregation properties of norovirus GI and GII virus-like particles demonstrate differing responses to solution chemistry. Environ Sci Tech. 2011, 45: 520-526.
Article
CAS
Google Scholar
Lewis GD, Metcalf TG: Polyethylene glycol precipitation for recovery of pathogenic viruses, including Hepatitis A Virus and human Rotavirus, from oyster, water and sediment samples. Appl Environ Microbiol. 1998, 54: 1983-1988.
Google Scholar
Kitamoto N, Tanaka T, Natori K, Takeda N, Nakata S, Jiang X, Estes MK: Cross-reactivity among several recombinant calicivirus virus-like particles (VLPs) with monoclonal antibodies obtained from mice immunized orally with one type of VLP. J Clin Microbiol. 2002, 40: 2459-2465.
Article
CAS
Google Scholar
Arnold K, Bordoli L, Kopp J, Schwede T: The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics. 2006, 22: 195-201.
Article
CAS
Google Scholar
Siebenga JJ, Lemey P, Pond SLK, Rambaut A, Vennema H, Koopmans M: Phylodynamic reconstruction reveals Norovirus GII.4 epidemic expansions and their molecular determinants. PLoS Pathog. 2010, 6: e1000884-
Article
Google Scholar
Medici MC, Martinelli M, Abelli LA, Ruggeri FM, Di Bartolo I, Arcangeletti MC, Pinardi F, De Conto F, Izzi G, Bernasconi S, Chezzi C, Dettori G: Molecular epidemiology of Norovirus infections in sporadic cases of viral gastroenteritis among children in northern Italy. J Med Virol. 2006, 78: 1486-1492.
Article
CAS
Google Scholar