Nanba D, Toki F, Barrandon Y, Higashiyama S. Recent advances in the epidermal growth factor receptor/ligand system biology on skin homeostasis and keratinocyte stem cell regulation. J Dermatol Sci. 2013;72(2):81–6.
Article
CAS
Google Scholar
Caussa JE, Vila EH. Epidermal growth factor, innovation and safety. Med Clínica (Eng Ed). 2015;145(7):305–12.
Google Scholar
Berlanga J, Fernández JI, López E, López PA, del Río A, Valenzuela C, Baldomero J, Muzio V, Raíces M, Silva R, et al. Heberprot-P: a novel product for treating advanced diabetic foot ulcer. MEDICC Rev. 2013;15(1):11–5.
Article
Google Scholar
Hardwicke J, Schmaljohann D, Boyce D, Thomas D. Epidermal growth factor therapy and wound healing—Past, present and future perspectives. Surgeon. 2008;6(3):172–7.
Article
CAS
Google Scholar
Lu W, Cao P, Lei H, Zhang S. High-level expression and purification of heparin-binding epidermal growth factor (HB-EGF) with SUMO fusion. Mol Biotechnol. 2010;44(3):198–203.
Article
CAS
Google Scholar
Ma Y, Yu J, Lin J, Wu S, Li S, Wang J. High efficient expression, purification, and functional characterization of native human epidermal growth factor in Escherichia coli. Biomed Res Int. 2016;2016:3758941.
Article
Google Scholar
Su H, Chen J, Chen P. Production of recombinant human epidermal growth factor in Bacillus subtilis. J Taiwan Inst Chem E. 2020;106:86–91.
Article
CAS
Google Scholar
Wei D, DingJi S, Hui Z, Hui Z, Liang R, GuoHong P, Ren-Bao G, SuJuan C, MuLan L. Expression of human epidermal growth factor gene in cyanobacteria. J Integr Plant Biol. 2001;43(12):1260–4.
Google Scholar
Wirth S, Calamante G, Mentaberry A, Bussmann L, Lattanzi M, Barañao L, Bravo-Almonacid F. Expression of active human epidermal growth factor (hEGF) in tobacco plants by integrative and non-integrative systems. Mol Breed. 2004;13(1):23–35.
Article
CAS
Google Scholar
Wirth S, Segretin ME, Mentaberry A, Bravo-Almonacid F. Accumulation of hEGF and hEGF–fusion proteins in chloroplast-transformed tobacco plants is higher in the dark than in the light. J Biotechnol. 2006;125(2):159–72.
Article
CAS
Google Scholar
Bai JY, Zeng L, Hu YL, Li YF, Lin ZP, Shang SC, Shi YS. Expression and characteristic of synthetic human epidermal growth factor (hEGF) in transgenic tobacco plants. Biotechnol Lett. 2007;29(12):2007–12.
Article
CAS
Google Scholar
Zhi Q, Zhang F, Chai M, Yu X, Sun M. Success expression of human epidermal growth factor in transgenic tomato. Chin Pharmacol Bull. 2007;23(5):692.
CAS
Google Scholar
Yang L, Chengwu X, Degang Z. Genetic transformation of tobacco with human epidermal growth factor gene. Mol Plant Breeding. 2008;6(3):465–70.
Google Scholar
Parsons J, Wirth S, Dominguez M, Bravo-Almonacid F, Giulietti A, Talou JR. Production of human epidermal growth factor (hEGF) by in vitro cultures of Nicotiana tabacum: effect of tissue differentiation and sodium nitroprusside addition. Int J Biotechnol Biochem. 2010;6:131–8.
Google Scholar
Thomas DR, Walmsley AM. Improved expression of recombinant plant-made hEGF. Plant Cell Rep. 2014;33(11):1801–14.
Article
CAS
Google Scholar
He Y, Schmidt MA, Erwin C, Guo J, Sun R, Pendarvis K, Warner BW, Herman EM. Transgenic soybean production of bioactive human epidermal growth factor (EGF). PLoS ONE. 2016;11(6):e0157034.
Article
Google Scholar
Huang YP, Huang F, Wang C. Efficient expression of epidermal growth factor in Chlamydomonas reinhardtii CC400. Appl Biochem Micro +. 2017;53(5):513–7.
Article
CAS
Google Scholar
Hanittinan O, Oo Y, Chaotham C, Rattanapisit K, Shanmugaraj B, Phoolcharoen W. Expression optimization, purification and in vitro characterization of human epidermal growth factor produced in Nicotiana benthamiana. Biotechnol Rep (Amsterdam Netherlands). 2020;28:e00524.
Google Scholar
Morgenfeld MM, Vater CF, Alfano EF, Boccardo NA, Bravo-Almonacid FF. Translocation from the chloroplast stroma into the thylakoid lumen allows expression of recombinant epidermal growth factor in transplastomic tobacco plants. Transgenic Res. 2020;29(3):295–305.
Article
CAS
Google Scholar
Torrent M, Llompart B, Lasserre-Ramassamy S, Llop-Tous I, Bastida M, Marzabal P, Westerholm-Parvinen A, Saloheimo M, Heifetz PB, Ludevid MD. Eukaryotic protein production in designed storage organelles. BMC Biol. 2009;7:5.
Article
Google Scholar
Zhou T, Wang L, Wang W, Feng X, Yang J. The study on transformation of human epidermal growth factor in safflower. J Northwest A&F Univ-Natl Sci Edn. 2013;41(12):162–6.
Negahdari B, Shahosseini Z, Baniasadi V. Production of human epidermal growth factor using adenoviral based system. Res Pharm Sci. 2016;11(1):43–8.
Google Scholar
Abiri R, Valdiani A, Maziah M, Shaharuddin NA, Sahebi M, Yusof ZNB, Atabaki N, Talei D. A critical review of the concept of transgenic plants: insights into pharmaceutical biotechnology and molecular farming. Curr Issues Mol Biol. 2015;18:21–42.
Google Scholar
Zagorskaya AA, Deineko EV. Plant-expression systems: a new stage in production of biopharmaceutical preparations. Russ J Plant Physiol. 2021;68(1):17–30.
Article
CAS
Google Scholar
Monreal-Escalante E, Ramos-Vega A, Angulo C, Bañuelos-Hernández B. Plant-based vaccines: Antigen Design, Diversity, and strategies for high Level production. Vaccines. 2022;10(1):100.
Article
CAS
Google Scholar
Santoni M, Gecchele E, Zampieri R, Avesani L. Plant-based systems for vaccine production. In: Vaccine design. Springer; 2022:95–115.
Liu H, Timko MP. Improving protein quantity and quality—the Next Level of Plant Molecular Farming. Int J Mol Sci. 2022;23(3):1326.
Article
CAS
Google Scholar
Chen Q. Development of plant-made monoclonal antibodies against viral infections. Curr Opin Virol. 2022;52:148–60.
Article
CAS
Google Scholar
Mirzaee M, Osmani Z, Frébortová J, Frébort I. Recent advances in molecular farming using monocot plants. Biotechnol Adv. 2022;107913.
Kumar M, Kumari N, Thakur N, Bhatia SK, Saratale GD, Ghodake G, Mistry BM, Alavilli H, Kishor D, Du X. A comprehensive overview on the production of vaccines in plant-based expression Systems and the scope of Plant Biotechnology to Combat against SARS-CoV-2 Virus Pandemics. Plants. 2021;10(6):1213.
Article
CAS
Google Scholar
Nosaki S, Hoshikawa K, Ezura H, Miura K. Transient protein expression systems in plants and their applications. Plant Biotechnol. 2021;38(3):297–304.
Article
CAS
Google Scholar
Zagorskaya A, Deineko E. Plant-expression Systems: a New Stage in production of Biopharmaceutical Preparations. Russ J Plant Physiol. 2021;68(1):17–30.
Article
CAS
Google Scholar
LeBlanc Z, Waterhouse P, Bally J: Plant-based vaccines: The way ahead? Viruses 2020;13(1):5.
Shanmugaraj B, Bulaon I, Phoolcharoen CJ. W: Plant molecular farming: a viable platform for recombinant biopharmaceutical production. Plants. 2020;9(7):842.
Article
CAS
Google Scholar
Shim B-S, Hong K-J, Maharjan PM, Choe S. Plant factory: New resource for the productivity and diversity of human and veterinary vaccines. Clin Experimental Vaccine Res. 2019;8(2):136–9.
Article
CAS
Google Scholar
Niknejad A. Plant-based expression systems for protein and antimicrobial peptide production. Nova Biologica Reperta. 2018;5(3):262–73.
Article
Google Scholar
Kawaka F, Ngetich A. Plants as expression systems for recombinant proteins. Asian J Biology. 2017;3(3):1–8.
Article
Google Scholar
Holaskova E, Galuszka P, Frebort I, Oz MT. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnol Adv. 2015;33(6):1005–23.
Article
CAS
Google Scholar
Sack M, Hofbauer A, Fischer R, Stoger E. The increasing value of plant-made proteins. Curr Opin Biotechnol. 2015;32:163–70.
Article
CAS
Google Scholar
Ahmad K. Molecular farming: strategies, expression systems and bio-safety considerations. Czech J Genet Plant Breed. 2014;50(1):1–10.
Article
Google Scholar
Hefferon K. Plant virus expression vector development: new perspectives. BioMed research international 2014.
Espinoza-Sánchez EA, Torres-Castillo JA, Rascón-Cruz Q, Zavala-García F, Sinagawa-García SR. Production and characterization of fungal β-glucosidase and bacterial cellulases by tobacco chloroplast transformation. Plant Biotechnol Rep. 2016;10(2):61–73.
Article
Google Scholar
Huang CH, Huang TL, Liu YC, Chen TC, Lin SM, Shaw SY, Chang CC. Overexpression of a multifunctional beta-glucosidase gene from thermophilic archaeon Sulfolobus solfataricus in transgenic tobacco could facilitate glucose release and its use as a reporter. Transgenic Res. 2020;29(5–6):511–27.
Article
Google Scholar
Whittall DR, Baker KV, Breitling R, Takano E. Host systems for the production of recombinant spider silk. Trends Biotechnol. 2021;39(6):560–73.
Article
CAS
Google Scholar
Higo K, Saito Y, Higo H. Expression of a chemically synthesized gene for human epidermal growth factor under the control of cauliflower mosaic virus 35S promoter in transgenic tobacco. Biosci Biotechnol Biochem. 1993;57(9):1477–81.
Article
CAS
Google Scholar
Hanittinan O, Oo Y, Chaotham C, Rattanapisit K, Shanmugaraj B, Phoolcharoen W. Expression optimization, purification and in vitro characterization of human epidermal growth factor produced in Nicotiana benthamiana. Biotechnol Rep. 2020;28:e00524.
Article
Google Scholar
Salmanian AH, Gushchin A, Medvedeva T, Noori-Daloii MR, Domansky N. Synthesis and expression of the gene for human epidermal growth factor in transgenic potato plants. Biotechnol Lett. 1996;18(9):1095–8.
Article
CAS
Google Scholar
Wu C, Kuo W, Chang C, Kuo J, Tsai Y, Yu S, Wu H, Chen P. The modified rice αAmy8 promoter confers high-level foreign gene expression in a novel hypoxia-inducible expression system in transgenic rice seedlings. Plant Mol Biol. 2014;85(1–2):147–61.
Article
CAS
Google Scholar
Wang Y, Fan J, Ahmad N, Xin W, Wei Z, Xing S. Successful production of human epidermal growth factor in tobacco chloroplasts in a biologically active conformation. Growth Factors. 2022:1–12. https://doi.org/10.1080/08977194.2022.2150187
Lössl AG, Waheed MT. Chloroplast-derived vaccines against human diseases: achievements, challenges and scopes. Plant Biotechnol J. 2011;9(5):527–39.
Article
Google Scholar
Siddiqui A, Wei Z, Boehm M, Ahmad N. Engineering microalgae through chloroplast transformation to produce high-value industrial products. Biotechnol Appl Bioc. 2020;67(1):30–40.
Article
CAS
Google Scholar
Jin S, Daniell H. The engineered chloroplast genome just got smarter. Trends Plant Sci. 2015;20(10):622–40.
Article
CAS
Google Scholar
Saumya S, Aberami JA, Sankar PD. Plastid transformation – a greener and cleaner technique for overexpression of proteins. Res J PharmTech. 2019;12(10):5083.
Google Scholar
Yu Y, Yu P, Chang W, Yu K, Lin C. Plastid transformation: how does it work? Can it be applied to crops? What can it offer? Int J Mol Sci. 2020;21(14):4854.
Article
CAS
Google Scholar
Schmidt JA, Richter LV, Condoluci LA, Ahner BA. Mitigation of deleterious phenotypes in chloroplast-engineered plants accumulating high levels of foreign proteins. Biotechnol Biofuels. 2021;14(1):1–14.
Article
Google Scholar
Bock R. Engineering chloroplasts for high-level constitutive or inducible transgene expression. Chloroplast Biotechnol. 2021;77–94.
Ahmad N, Mehmood MA, Malik S. Recombinant protein production in microalgae: emerging trends. Protein Pept Lett. 2020;27(2):105–10.
Article
CAS
Google Scholar
Khan MS, Mustafa G, Joyia FA. Technical advances in Chloroplast Biotechnology. In: Transgenic crops-emerging Trends and Future Perspectives. IntechOpen; 2019.
Occhialini A, Piatek AA, Pfotenhauer AC, Frazier TP, Stewart CN Jr, Lenaghan SC. MoChlo: a versatile, modular cloning toolbox for chloroplast biotechnology. Plant Physiol. 2019;179(3):943–57.
Article
CAS
Google Scholar
Taunt HN, Stoffels L, Purton S. Green biologics: the algal chloroplast as a platform for making biopharmaceuticals. Bioengineered. 2018;9(1):48–54.
Article
CAS
Google Scholar
Dyo YM, Purton S. The algal chloroplast as a synthetic biology platform for production of therapeutic proteins. Microbiology. 2018;164(2):113–21.
Article
CAS
Google Scholar
Adem M, Beyene D, Feyissa T. Recent achievements obtained by chloroplast transformation. Plant Methods. 2017;13(1):1–11.
Article
Google Scholar
Shamriz S, Ofoghi H. Outlook in the application of Chlamydomonas reinhardtii chloroplast as a platform for recombinant protein production. Biotechnol Genet Eng. 2016;32(1–2):92–106.
Article
Google Scholar
Daniell H, Lin C-S, Yu M, Chang W-J. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol. 2016;17(1):1–29.
Article
Google Scholar
Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J. Engineered GFP as a vital reporter in plants. Curr Bio. 1996;6(3):325–30.
Article
CAS
Google Scholar
Wang Y, Wei Z, Zhang Y, Lin C, Zhong X, Wang Y, Ma J, Ma J, Xing S. Chloroplast-expressed MSI-99 in tobacco improves disease resistance and displays inhibitory effect against rice blast fungus. Int J Mol Sci. 2015;16(3):4628–41.
Article
CAS
Google Scholar
William Studier F, Rosenberg AH, Dunn JJ, Dubendorff JW. Use of T7 RNA polymerase to direct expression of cloned genes. Methods in Enzymology. Vol. 185: Academic Press; 1990: pp. 60–89.
Waheed MT, Thönes N, Müller M, Hassan SW, Razavi NM, Lössl E, Kaul H-P, Lössl AG. Transplastomic expression of a modified human papillomavirus L1 protein leading to the assembly of capsomeres in tobacco: a step towards cost-effective second-generation vaccines. Transgenic Res. 2011;20(2):271–82.
Article
CAS
Google Scholar
Wang Y, Wei Z, Zhong X, Lin C, Cai Y, Ma J, Zhang Y, Liu Y, Xing S. Stable expression of basic fibroblast growth factor in chloroplasts of tobacco. Int J Mol Sci. 2015;17(1):19.
Article
Google Scholar
Wei Z, Liu Y, Lin C, Wang Y, Dong Y, Xing S. Transformation of alfalfa chloroplasts and expression of green fluorescent protein in a forage crop. Biotechnol Lett. 2011;33(12):2487–94.
Article
CAS
Google Scholar
Wei Z, Zhang Y, Wang Y, Fan M, Zhong X, Xu N, Lin F, Xing S. Production of bioactive recombinant bovine chymosin in Tobacco plants. Int J Mol Sci. 2016;17(5).
Zhang J, Song Y, Liang Y, Zou H, Zuo P, Mi Y, Jing S, Li T, Wang Y, Li D, et al. Cucurbitacin IIa interferes with EGFR-MAPK signaling pathway leads to proliferation inhibition in A549cells - ScienceDirect. Food Chem Toxicol: Int J Publ British Indust Biol Res Assoc. 132:110654.
Jing S, Wu Z, Zhang T, Zhang J, Wei Z. In vitro antitumor effect of cucurbitacin E on human lung cancer cell line and its molecular mechanism. Chin J Nat Medicines. 2020;18(7):483–90.
Article
CAS
Google Scholar