Delude C, Moussu S, Joubes J, Ingram G, Domergue F. Plant surface lipids and epidermis development. Subcell Biochem. 2016;86:287–313.
Article
CAS
PubMed
Google Scholar
Siebers M, Brands M, Wewer V, Duan Y, Holzl G, Dormann P. Lipids in plant-microbe interactions. Biochim Biophys Acta. 2016;1861(9 Pt B):1379–95.
Article
CAS
PubMed
Google Scholar
Mamode Cassim A, Gouguet P, Gronnier J, Laurent N, Germain V, Grison M, et al. Plant lipids: key players of plasma membrane organization and function. Prog Lipid Res. 2019;73:1–27.
Article
CAS
PubMed
Google Scholar
Lee SM, Suh S, Kim S, Crain RC, Kwak JM, Nam HG, et al. Systemic elevation of phosphatidic acid and lysophospholipid levels in wounded plants. Plant J. 1997;12(3):547–56.
Article
CAS
Google Scholar
Canonne J, Froidure-Nicolas S, Rivas S. Phospholipases in action during plant defense signaling. Plant Signal Behav. 2011;6(1):13–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee OR, Kim SJ, Kim HJ, Hong JK, Ryu SB, Lee SH, et al. Phospholipase a(2) is required for PIN-FORMED protein trafficking to the plasma membrane in the Arabidopsis root. Plant Cell. 2010;22(6):1812–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee HY, Bahn SC, Shin JS, Hwang I, Back K, Doelling JH, et al. Multiple forms of secretory phospholipase A2 in plants. Prog Lipid Res. 2005;44(1):52–67.
Article
CAS
PubMed
Google Scholar
Lee S, Hirt H, Lee Y. Phosphatidic acid activates a wound-activated MAPK in Glycine max. Plant J. 2001;26(5):479–86.
Article
CAS
PubMed
Google Scholar
Hong JH, Chung GH, Cowan AK. Lyso-phosphatidylethanolamine-enhanced phenylalanine ammonia-lyase and insoluble acid invertase in isolated radish cotyledons. Plant Growth Regul. 2009;57(1):69–78.
Article
CAS
Google Scholar
Way HM, Kazan K, Mitter N, Goulter KC, Birch RG, Manners JM. Constitutive expression of a phenylalanine ammonia-lyase gene from Stylosanthes humilis in transgenic tobacco leads to enhanced disease resistance but impaired plant growth. Physiol Mol Plant P. 2002;60(6):275–82.
Article
CAS
Google Scholar
Roitsch T, Balibrea ME, Hofmann M, Proels R, Sinha AK. Extracellular invertase: key metabolic enzyme and PR protein. J Exp Bot. 2003;54(382):513–24.
Article
CAS
PubMed
Google Scholar
Farag KM, Palta JP. Use of Lysophosphatidylethanolamine, a natural lipid, to retard tomato leaf and fruit senescence. Physiol Plant. 1993;87(4):515–21.
Article
CAS
Google Scholar
Amaro AL, Almeida DPF. Lysophosphatidylethanolamine effects on horticultural commodities: a review. Postharvest Biol Tec. 2013;78:92–102.
Article
CAS
Google Scholar
Ozgen M, Serce S, Akca Y, Hong JH. Lysophosphatidylethanolamine (LPE) improves fruit size, color, quality and phytochemical contents of sweet cherry c.v. '0900 Ziraat'. Korean J Hortic Sci. 2015;33(2):196–201.
CAS
Google Scholar
Ryu SB, Karlsson BH, Ozgen M, Palta JP. Inhibition of phospholipase D by lysophosphatidylethanolamine, a lipid-derived senescence retardant. Proc Natl Acad Sci U S A. 1997;94(23):12717–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong JH, Chung G, Cowan AK. Delayed leaf senescence by exogenous lyso-phosphatidylethanolamine: towards a mechanism of action. Plant Physiol Biochem. 2009;47(6):526–34.
Article
CAS
PubMed
Google Scholar
Ryu SB, Wang X. Expression of phospholipase D during Castor bean leaf senescence. Plant Physiol. 1995;108(2):713–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X. Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses. Plant Physiol. 2005;139(2):566–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bigeard J, Colcombet J, Hirt H. Signaling mechanisms in pattern-triggered immunity (PTI). Mol Plant. 2015;8(4):521–39.
Article
CAS
PubMed
Google Scholar
Felix G, Duran JD, Volko S, Boller T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 1999;18(3):265–76.
Article
CAS
PubMed
Google Scholar
Deslandes L, Rivas S. Catch me if you can: bacterial effectors and plant targets. Trends Plant Sci. 2012;17(11):644–55.
Article
CAS
PubMed
Google Scholar
Mackey D, Holt BF 3rd, Wiig A, Dangl JL. RIN4 interacts with pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell. 2002;108(6):743–54.
Article
CAS
PubMed
Google Scholar
Durrant WE, Dong X. Systemic acquired resistance. Annu Rev Phytopathol. 2004;42:185–209.
Article
CAS
PubMed
Google Scholar
Chen Z, Silva H, Klessig DF. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science. 1993;262(5141):1883–6.
Article
CAS
PubMed
Google Scholar
Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, et al. Requirement of salicylic acid for the induction of systemic acquired resistance. Science. 1993;261(5122):754–6.
Article
CAS
PubMed
Google Scholar
Strawn MA, Marr SK, Inoue K, Inada N, Zubieta C, Wildermuth MC. Arabidopsis isochorismate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. J Biol Chem. 2007;282(8):5919–33.
Article
CAS
PubMed
Google Scholar
Wildermuth MC, Dewdney J, Wu G, Ausubel FM. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature. 2001;414(6863):562–5.
Article
CAS
PubMed
Google Scholar
Wang L, Tsuda K, Truman W, Sato M, Nguyenle V, Katagiri F, et al. CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling. Plant J. 2011;67(6):1029–41.
Article
CAS
PubMed
Google Scholar
Zhang Y, Xu S, Ding P, Wang D, Cheng YT, He J, et al. Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proc Natl Acad Sci U S A. 2010;107(42):18220–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Gao J, Zhu Z, Dong X, Wang X, Ren G, et al. TCP transcription factors are critical for the coordinated regulation of isochorismate synthase 1 expression in Arabidopsis thaliana. Plant J. 2015;82(1):151–62.
Article
CAS
PubMed
Google Scholar
van Verk MC, Bol JF, Linthorst HJ. WRKY transcription factors involved in activation of SA biosynthesis genes. BMC Plant Biol. 2011;11:89.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zheng XY, Zhou M, Yoo H, Pruneda-Paz JL, Spivey NW, Kay SA, et al. Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid. Proc Natl Acad Sci U S A. 2015;112(30):9166–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nawrath C, Heck S, Parinthawong N, Metraux JP. EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell. 2002;14(1):275–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Serrano M, Wang B, Aryal B, Garcion C, Abou-Mansour E, Heck S, et al. Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5. Plant Physiol. 2013;162(4):1815–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamasaki K, Motomura Y, Yagi Y, Nomura H, Kikuchi S, Nakai M, et al. Chloroplast envelope localization of EDS5, an essential factor for salicylic acid biosynthesis in Arabidopsis thaliana. Plant Signal Behav. 2013;8(4):e23603.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, et al. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep. 2012;1(6):639–47.
Article
CAS
PubMed
Google Scholar
Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, et al. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature. 2012;486(7402):228–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou JM, Trifa Y, Silva H, Pontier D, Lam E, Shah J, et al. NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol Plant Microbe Interact. 2000;13(2):191–202.
Article
CAS
PubMed
Google Scholar
Despres C, DeLong C, Glaze S, Liu E, Fobert PR. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell. 2000;12(2):279–90.
CAS
PubMed
PubMed Central
Google Scholar
Hermann M, Maier F, Masroor A, Hirth S, Pfitzner AJ, Pfitzner UM. The Arabidopsis NIMIN proteins affect NPR1 differentially. Front Plant Sci. 2013;4:88.
Article
PubMed
PubMed Central
Google Scholar
Ding Y, Sun T, Ao K, Peng Y, Zhang Y, Li X, et al. Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. Cell. 2018;173(6):1454–67 e1415.
Article
CAS
PubMed
Google Scholar
Balint-Kurti P. The plant hypersensitive response: concepts, control and consequences. Mol Plant Pathol. 2019;20(8):1163–78.
PubMed
PubMed Central
Google Scholar
Herrera-Vasquez A, Salinas P, Holuigue L. Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Front Plant Sci. 2015;6:171.
Article
PubMed
PubMed Central
Google Scholar
Dietz KJ, Turkan I, Krieger-Liszkay A. Redox- and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast. Plant Physiol. 2016;171(3):1541–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomma BP, Nelissen I, Eggermont K, Broekaert WF. Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant J. 1999;19(2):163–71.
Article
CAS
PubMed
Google Scholar
Thomma B, Eggermont K, Penninckx I, Mauch-Mani B, Vogelsang R, Cammue BPA, et al. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci U S A. 1998;95(25):15107–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomma BP, Eggermont K, Tierens KF, Broekaert WF. Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol. 1999;121(4):1093–102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li N, Han X, Feng D, Yuan D, Huang LJ. Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense: do we understand what they are whispering? Int J Mol Sci. 2019;20:671.
Article
PubMed Central
CAS
Google Scholar
Volz R, Park JY, Kim S, Park SY, Harris W, Chung H, et al. The rice/maize pathogen Cochliobolus spp. infect and reproduce on Arabidopsis revealing differences in defensive phytohormone function between monocots and dicots. Plant J. 2020;103(1):412–29.
Article
PubMed
CAS
Google Scholar
Robert-Seilaniantz A, Grant M, Jones JD. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol. 2011;49:317–43.
Article
CAS
PubMed
Google Scholar
Van der Does D, Leon-Reyes A, Koornneef A, Van Verk MC, Rodenburg N, Pauwels L, et al. Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell. 2013;25(2):744–61.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cao H, Glazebrook J, Clarke JD, Volko S, Dong XN. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell. 1997;88(1):57–63.
Article
CAS
PubMed
Google Scholar
Weigel RR, Bauscher C, Pfitzner AJ, Pfitzner UM. NIMIN-1, NIMIN-2 and NIMIN-3, members of a novel family of proteins from Arabidopsis that interact with NPR1/NIM1, a key regulator of systemic acquired resistance in plants. Plant Mol Biol. 2001;46(2):143–60.
Article
CAS
PubMed
Google Scholar
Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, et al. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature. 2002;415(6875):977–83.
Article
CAS
PubMed
Google Scholar
Yi SY, Shirasu K, Moon JS, Lee SG, Kwon SY. The activated SA and JA signaling pathways have an influence on flg22-triggered oxidative burst and callose deposition. PLoS One. 2014;9(2):e88951.
Article
PubMed
PubMed Central
CAS
Google Scholar
Volz R, Kim SK, Mi J, Mariappan KG, Guo X, Bigeard J, et al. The Trihelix transcription factor GT2-like 1 (GTL1) promotes salicylic acid metabolism, and regulates bacterial-triggered immunity. PLoS Genet. 2018;14(10):e1007708.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pre M, Atallah M, Champion A, De Vos M, Pieterse CM, Memelink J. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol. 2008;147(3):1347–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berrocal-Lobo M, Molina A, Solano R. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J. 2002;29(1):23–32.
Article
CAS
PubMed
Google Scholar
Penninckx IA, Thomma BP, Buchala A, Metraux JP, Broekaert WF. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell. 1998;10(12):2103–13.
CAS
PubMed
PubMed Central
Google Scholar
Lim PO, Kim HJ, Nam HG. Leaf senescence. Annu Rev Plant Biol. 2007;58:115–36.
Article
CAS
PubMed
Google Scholar
Dhar N, Caruana J, Erdem I, Subbarao KV, Klosterman SJ, Raina R. The Arabidopsis SENESCENCE-ASSOCIATED GENE 13 regulates dark-induced senescence and plays contrasting roles in defense against bacterial and fungal pathogens. Mol Plant Microbe Interact. 2020;33(5):754–66.
Article
CAS
PubMed
Google Scholar
Chen LQ, Lin IW, Qu XQ, Sosso D, McFarlane HE, Londono A, et al. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. Plant Cell. 2015;27(3):607–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weaver LM, Gan S, Quirino B, Amasino RM. A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol Biol. 1998;37(3):455–69.
Article
CAS
PubMed
Google Scholar
Callard D, Axelos M, Mazzolini L. Novel molecular markers for late phases of the growth cycle of Arabidopsis thaliana cell-suspension cultures are expressed during organ senescence. Plant Physiol. 1996;112(2):705–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Queval G, Thominet D, Vanacker H, Miginiac-Maslow M, Gakiere B, Noctor G. H2O2-activated up-regulation of glutathione in Arabidopsis involves induction of genes encoding enzymes involved in cysteine synthesis in the chloroplast. Mol Plant. 2009;2(2):344–56.
Article
CAS
PubMed
Google Scholar
Rahantaniaina MS, Tuzet A, Mhamdi A, Noctor G. Missing links in understanding redox signaling via thiol/disulfide modulation: how is glutathione oxidized in plants? Front Plant Sci. 2013;4:477.
Article
PubMed
PubMed Central
Google Scholar
Sewelam N, Kazan K, Hüdig M, Maurino VG, Schenk PM. The AtHSP17.4C1 gene expression is mediated by diverse signals that link biotic and abiotic stress factors with ROS and can be a useful molecular marker for oxidative stress. Int J Mol Sci. 2019;20:3201.
Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, et al. OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature. 2004;427(6977):858–61.
Article
CAS
PubMed
Google Scholar
Zhou X, Jiang Y, Yu D. WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis. Mol Cells. 2011;31(4):303–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miao Y, Laun T, Zimmermann P, Zentgraf U. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol. 2004;55(6):853–67.
Article
CAS
PubMed
Google Scholar
Jia L, Xu W, Li W, Ye N, Liu R, Shi L, et al. Class III peroxidases are activated in proanthocyanidin-deficient Arabidopsis thaliana seeds. Ann Bot. 2013;111(5):839–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373–99.
Article
CAS
PubMed
Google Scholar
Somssich IE, Wernert P, Kiedrowski S, Hahlbrock K. Arabidopsis thaliana defense-related protein ELI3 is an aromatic alcohol:NADP+ oxidoreductase. Proc Natl Acad Sci U S A. 1996;93(24):14199–203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamauchi Y, Hasegawa A, Taninaka A, Mizutani M, Sugimoto Y. NADPH-dependent reductases involved in the detoxification of reactive carbonyls in plants. J Biol Chem. 2011;286(9):6999–7009.
Article
CAS
PubMed
Google Scholar
Noctor G, Foyer CH. ASCORBATE AND GLUTATHIONE: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol. 1998;49:249–79.
Article
CAS
PubMed
Google Scholar
Mhamdi A, Noctor G, Baker A. Plant catalases: peroxisomal redox guardians. Arch Biochem Biophys. 2012;525(2):181–94.
Article
CAS
PubMed
Google Scholar
Pilon M, Ravet K, Tapken W. The biogenesis and physiological function of chloroplast superoxide dismutases. Biochim Biophys Acta. 2011;1807(8):989–98.
Article
CAS
PubMed
Google Scholar
Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot. 2002;53(372):1331–41.
Article
CAS
PubMed
Google Scholar
Nounjan N, Nghia PT, Theerakulpisut P. Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol. 2012;169(6):596–604.
Article
CAS
PubMed
Google Scholar
Torres MA, Dangl JL. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol. 2005;8(4):397–403.
Article
CAS
PubMed
Google Scholar
Torres MA, Dangl JL, Jones JD. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci U S A. 2002;99(1):517–22.
Article
CAS
PubMed
Google Scholar
Beaugelin I, Chevalier A, D'Alessandro S, Ksas B, Novak O, Strnad M, et al. OXI1 and DAD regulate light-induced cell death antagonistically through Jasmonate and salicylate levels. Plant Physiol. 2019;180(3):1691–708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Černý M, Habánová H, Berka M, Luklová M, Brzobohatý B. Hydrogen Peroxide: Its Role in Plant Biology and Crosstalk with Signalling Networks. Int J Mol Sci. 2018;19:2812.
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447–52.
Article
CAS
PubMed
Google Scholar
Galletti R, Ferrari S, De Lorenzo G. Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea. Plant Physiol. 2011;157(2):804–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Su J, Yang L, Zhu Q, Wu H, He Y, Liu Y, et al. Active photosynthetic inhibition mediated by MPK3/MPK6 is critical to effector-triggered immunity. PLoS Biol. 2018;16(5):e2004122.
Article
PubMed
PubMed Central
CAS
Google Scholar
Meents AK, Mithöfer A. Plant–Plant Communication: Is There a Role for Volatile Damage-Associated Molecular Patterns? Front Plant Sci. 2020;11:583275. https://doi.org/10.3389/fpls.2020.583275.
Volz R, Kim SK, Mi J, Mariappan KG, Siodmak A, Al-Babili S, et al. A Chimeric IDD4 Repressor Constitutively Induces Immunity in Arabidopsis via the Modulation of Salicylic Acid and Jasmonic Acid Homeostasis. Plant Cell Physiol. 2019;60:1536–55.
Liu Y, Ren D, Pike S, Pallardy S, Gassmann W, Zhang S. Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. Plant J. 2007;51(6):941–54.
Article
CAS
PubMed
Google Scholar
Smith JM, Heese A. Rapid bioassay to measure early reactive oxygen species production in Arabidopsis leave tissue in response to living pseudomonas syringae. Plant Methods. 2014;10(1):6.
Article
PubMed
PubMed Central
CAS
Google Scholar