Carlini CR, Ligabue-Braun R. Ureases as multifunctional toxic proteins: A review. Toxicon. 2016;110:90–109.
CAS
PubMed
Google Scholar
Sá CA, Vieira LR, Pereira Almeida Filho LC, Real-Guerra R, Lopes FC, Souza TM, et al. Risk assessment of the antifungal and insecticidal peptide Jaburetox and its parental protein the Jack bean (Canavalia ensiformis) urease. Food Chem Toxicol. 2020;136:110977.
PubMed
Google Scholar
Sridhar KR, Seena S. Nutritional and antinutritional significance of four unconventional legumes of the genus Canavalia – A comparative study. Food Chemistry. 2006;99(2):267–88.
CAS
Google Scholar
Summer JB. The isolation and crystallization of the enzyme urease preliminary paper. J Biol Chem. 1926;69(2):435–41.
Google Scholar
Fujiuchi N, Matoba N, Matsuda R. Environment Control to Improve Recombinant Protein Yields in Plants Based on Agrobacterium-Mediated Transient Gene Expression. Front Bioeng Biotechnol [Internet]. 2016;4 [citado 20 de abril de 2020] Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4781840/.
Debergh PC. Effects of agar brand and concentration on the tissue culture medium. Physiol Plant. 1983;59(2):270–6.
CAS
Google Scholar
Schenk N, Hsiao K-C, Bornman CH. Avoidance of precipitation and carbohydrate breakdown in autoclaved plant tissue culture media. Plant Cell Reports. 1991;10(3):115–9.
CAS
PubMed
Google Scholar
Tuan PA, Thwe AA, Kim YB, Kim JK, Kim S-J, Lee S, et al. Effects of White, Blue, and Red Light-Emitting Diodes on Carotenoid Biosynthetic Gene Expression Levels and Carotenoid Accumulation in Sprouts of Tartary Buckwheat (Fagopyrum tataricum Gaertn.). J Agric Food Chem. 2013;61(50):12356–61.
CAS
PubMed
Google Scholar
Lobiuc A, Vasilache V, Oroian M, Stoleru T, Burducea M, Pintilie O, et al. Blue and Red LED Illumination Improves Growth and Bioactive Compounds Contents in Acyanic and Cyanic Ocimum basilicum L. Microgreens. Molecules. 2017;22(12):2111.
PubMed Central
Google Scholar
Kapoor S, Raghuvanshi R, Bhardwaj P, Sood H, Saxena S, Chaurasia OP. Influence of light quality on growth, secondary metabolites production and antioxidant activity in callus culture of Rhodiola imbricata Edgew. J Photochemistry Photobiology B: Biol. 2018;183:258–65.
CAS
Google Scholar
Świeca M, Dziki D. Improvement in sprouted wheat flour functionality: effect of time, temperature and elicitation. Int J Food Sci Technol. 2015;50(9):2135–42.
Google Scholar
Pasqua G, Manes F, Monacelli B, Natale L, Anselmi S. Effects of the culture medium pH and ion uptake in in vitro vegetative organogenesis in thin cell layers of tobacco. Plant Sci. 2002;162(6):947–55.
CAS
Google Scholar
Raven JA, Smith FA. Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol. 1976;76(3):415–31.
CAS
Google Scholar
Lang B, Kaiser WM. Solute content and energy status of roots of barley plants cultivated at different pH on nitrate- or ammonium-nitrogen. New Phytol. 1994;128(3):451–9.
Google Scholar
Xiang J, Zheng J, Zhou Z, Suo H, Zhao X, Zhou X, et al. Enhancement of red emission and site analysis in Eu2+ doped new-type structure Ba3CaK(PO4)3 for plant growth white LEDs. Chemical Engineering J. 2019;356:236–44.
CAS
Google Scholar
Zhou N, Gao P, Yang Y, Zhong Y, Xia M, Zhang Y, et al. Novel orange–red emitting phosphor Sr8ZnY(PO4)7:Sm3+ with enhanced emission based on Mg2+ and Al3+ incorporation for plant growth LED lighting. J Taiwan Institute Chem Engineers. 2019;104:360–8.
CAS
Google Scholar
Zhou Z, Zheng J, Shi R, Zhang N, Chen J, Zhang R, et al. Ab Initio Site Occupancy and Far-Red Emission of Mn4+ in Cubic-Phase La(MgTi)1/2O3 for Plant Cultivation. ACS Appl Mater Interfaces. 2017;9(7):6177–85.
CAS
PubMed
Google Scholar
Wright M. Experts examine plant response to SSL and market potential at horticultural conference [Internet]. LEDs Magazine. 2019 [citado 5 de febrero de 2020]. Disponible en: https://www.ledsmagazine.com/manufacturing-services-testing/standards/article/16695503/experts-examine-plant-response-to-ssl-and-market-potential-at-horticultural-conference-magazine.
Carvalho RF, Takaki M, Azevedo RA. Plant pigments: the many faces of light perception. Acta Physiol Plant. 2011;33(2):241–8.
CAS
Google Scholar
Abidi F, Girault T, Douillet O, Guillemain G, Sintes G, Laffaire M, et al. Blue light effects on rose photosynthesis and photomorphogenesis. Plant Biol. 2013;15(1):67–74.
CAS
PubMed
Google Scholar
Massa GD, Kim H-H, Wheeler RM, Mitchell CA. Plant Productivity in Response to LED Lighting. HortScience. 2008;43(7):1951–6.
Google Scholar
Nhut DT, Takamura T, Watanabe H, Okamoto K, Tanaka M. Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs). Plant Cell Tissue Organ Culture. 2003;73(1):43–52.
CAS
Google Scholar
Li H, Tang C, Xu Z. The effects of different light qualities on rapeseed (Brassica napus L.) plantlet growth and morphogenesis in vitro. Scientia Horticulturae. 2013;150:117–24.
Google Scholar
Chen X, Yang Q, Song W, Wang L, Guo W, Xue X. Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation. Scientia Horticulturae. 2017;223:44–52.
CAS
Google Scholar
Eskins K, Jiang CZ, Shibles R. Light-quality and irradiance effects on pigments, light-harvesting proteins and Rubisco activity in a chlorophyll- and light- harvesting-deficient soybean mutant. Physiol Plant. 1991;83(1):47–53.
CAS
Google Scholar
Leong T-Y, Anderson JM. Effect of light quality on the composition and function of thylakoid membranes in Atriplex triangularis. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1984;766(3):533–41.
CAS
Google Scholar
Senger H, Bauer B. The influence of light quality on adaptation and function of the photosynthetic apparatus. Photochem Photobiol. 1987;45(S1):939–46.
CAS
Google Scholar
Wang XY, Xu XM, Cui J. The importance of blue light for leaf area expansion, development of photosynthetic apparatus, and chloroplast ultrastructure of Cucumis sativus grown under weak light. Photosynthetica. 2015;53(2):213–22.
CAS
Google Scholar
Costa BS, Jungandreas A, Jakob T, Weisheit W, Mittag M, Wilhelm C. Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum. J Exp Bot enero de. 2013;64(2):483–93.
Google Scholar
Brown CS, Schuerger AC, Sager JC. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J Am Soc Hortic Sci. 1995;120(5):808–13.
CAS
PubMed
Google Scholar
Goins GD, Yorio NC, Sanwo MM, Brown CS. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. J Exp Bot. 1997;48(7):1407–13.
CAS
PubMed
Google Scholar
Kato MC, Hikosaka K, Hirose T. Leaf discs floated on water are different from intact leaves in photosynthesis and photoinhibition. Photosynthesis Res. 2002;72(1):65.
CAS
Google Scholar
Jirakiattikul Y, Rithichai P, Songsri O, Ruangnoo S, Itharat A. In vitro propagation and bioactive compound accumulation in regenerated shoots of Dioscorea birmanica Prain & Burkill. Acta Physiol Plant. 2016;38(10):249.
Google Scholar
Saldarriaga JF, López J, Lopera C, Botero LR. Efecto del pH y el peso inicial de implante sembrado en la multiplicación callogénica de Canavalia ensiformis. Avances en Ciencias e Ingeniería. 2014;5(2):73–83.
CAS
Google Scholar
Williams RR, Taji AM, Winney KA. The effect of Ptilotus plant tissue on pH of in vitro media. Plant Cell Tiss Organ Cult. 1990;22(3):153–8.
Google Scholar
Ruenroengklin N, Zhong J, Duan X, Yang B, Li J, Jiang Y. Effects of Various Temperatures and pH Values on the Extraction Yield of Phenolics from Litchi Fruit Pericarp Tissue and the Antioxidant Activity of the Extracted Anthocyanins. Int J Mol Sci. 2008;9(7):1333–41.
CAS
PubMed
PubMed Central
Google Scholar
Isah T, Umar S, Mujib A, Sharma MP, Rajasekharan PE, Zafar N, et al. Secondary metabolism of pharmaceuticals in the plant in vitro cultures: strategies, approaches, and limitations to achieving higher yield. Plant Cell Tiss Organ Cult. 2018;132(2):239–65.
CAS
Google Scholar
Dussert S, Verdeil J-L, Rival A, Noirot M, Buffard-Morel J. Nutrient uptake and growth of in vitro coconut (Cocos nucifera L.) calluses. Plant Science. 1995;106(2):185–93.
CAS
Google Scholar
Yatazawa M, Furuhashi K, Shimizu M. Growth of callus tissue from rice-root in virto. Plant Cell Physiol. 1967;8(3):363–73.
CAS
Google Scholar
Jayaraman S, Daud NH, Halis R, Mohamed R. Effects of plant growth regulators, carbon sources and pH values on callus induction in Aquilaria malaccensis leaf explants and characteristics of the resultant calli. J Forestry Res. 2014;25(3):535–40.
CAS
Google Scholar
Rastogi R, Sawhney VK. The Role of Plant Growth Regulators, Sucrose and pH in the Development of Floral Buds of Tomato (Lycopersicon esculentum Mill.) Cultured in vitro. J Plant Physiol. 1987;128(3):285–95.
CAS
Google Scholar
Nagella P, Murthy HN. Establishment of cell suspension cultures of Withania somnifera for the production of withanolide A. Bioresource Technology. 2010;101(17):6735–9.
CAS
PubMed
Google Scholar
Naik PM, Manohar SH, Praveen N, Murthy HN. Effects of sucrose and pH levels on in vitro shoot regeneration from leaf explants of Bacopa monnieri and accumulation of bacoside A in regenerated shoots. Plant Cell Tiss Organ Cult. 2010;100(2):235–9.
Google Scholar
Majerus F, Pareilleux A. Production of indole alkaloids by gel-entrapped cells of Catharanthus roseus in a continuous flow reactor. Biotechnol Lett. 1986;8(12):863–6.
CAS
Google Scholar
Karsai I, Bedo Z, Hayes PM. Effect of induction medium pH and maltose concentration on in vitro androgenesis of hexaploid winter triticale and wheat. Plant Cell Tiss Organ Cult. 1994;39(1):49–53.
CAS
Google Scholar
Smith DL, Krikorian AD. Low external pH replaces 2,4-D in maintaining and multiplying 2,4-D-initiated embryogenic cells of carrot. Physiol Plant. 1990;80(3):329–36.
CAS
PubMed
Google Scholar
Sánchez F, Honrubia M, Torres P. Effects of pH, water stress and temperature on in vitro cultures of ectomycorrhizal fungi from Mediterranean forests. Cryptogamie Mycologie. 2001;22(4):243–58.
Google Scholar
Pfündel E, Baake E. A quantitative description of fluorescence excitation spectra in intact bean leaves greened under intermittent light. Photosynth Res. 1990;26(1):19–28.
PubMed
Google Scholar
Ahmed HA, Yu-Xin T, Qi-Chang Y. Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: A review. South Afr J Botany. 2020;130:75–89.
CAS
Google Scholar
Cosgrove DJ. Rapid Suppression of Growth by Blue Light: OCCURRENCE, TIME COURSE, AND GENERAL CHARACTERISTICS. Plant Physiol. 1981;67(3):584–90.
CAS
PubMed
PubMed Central
Google Scholar
Giliberto L, Perrotta G, Pallara P, Weller JL, Fraser PD, Bramley PM, et al. Manipulation of the Blue Light Photoreceptor Cryptochrome 2 in Tomato Affects Vegetative Development, Flowering Time, and Fruit Antioxidant Content. Plant Physiology. 2005;137(1):199–208.
CAS
PubMed
PubMed Central
Google Scholar
Li Q, Kubota C. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ Experimental Botany. 2009;67(1):59–64.
CAS
Google Scholar
Senger H. The effect of blue light on plants and microorganisms. Photochem Photobiol. 1982;35(6):911–20.
CAS
Google Scholar
Hoffmann AM, Noga G, Hunsche M. Alternating high and low intensity of blue light affects PSII photochemistry and raises the contents of carotenoids and anthocyanins in pepper leaves. Plant Growth Regul. 2016;79(3):275–85.
CAS
Google Scholar
Chiappero J, del R CL, Sosa Alderete LG, Palermo TB, Banchio E. Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content. Industrial Crops and Products. 2019;139:111553.
CAS
Google Scholar
Awika JM, Rooney LW, Wu X, Prior RL, Cisneros-Zevallos L. Screening Methods To Measure Antioxidant Activity of Sorghum (Sorghum bicolor) and Sorghum Products. J Agric Food Chem. 2003;51(23):6657–62.
CAS
PubMed
Google Scholar
Agati G, Tattini M. Multiple functional roles of flavonoids in photoprotection. New Phytol. 2010;186(4):786–93.
CAS
Google Scholar
Khalil N, Fekry M, Bishr M, El-Zalabani S, Salama O. Foliar spraying of salicylic acid induced accumulation of phenolics, increased radical scavenging activity and modified the composition of the essential oil of water stressed Thymus vulgaris L. Plant Physiol Biochem. 2018;123:65–74.
CAS
PubMed
Google Scholar
Oh J, Jo H, Cho AR, Kim S-J, Han J. Antioxidant and antimicrobial activities of various leafy herbal teas. Food Control. 2013;31(2):403–9.
CAS
Google Scholar
Riachi LG, De Maria CAB. Peppermint antioxidants revisited. Food Chemistry. 2015;176:72–81.
CAS
PubMed
Google Scholar
Caprioli G, Maggi F, Bendif H, Miara MD, Cinque B, Lizzi AR, et al. Thymus lanceolatus ethanolic extract protects human cells from t-BHP induced oxidative damage. Food Funct. 2018;9(7):3665–72.
CAS
PubMed
Google Scholar
Jabri Karoui I, Msaada K, Abderrabba M, Marzouk B. Bioactive compounds and antioxidant activities of ThymeEnriched refined corn oil. J Agr Sci Tech. 2016;18:79–91.
Google Scholar
Čanadanović-Brunet JM, Djilas SM, Ćetković GS, Tumbas VT, Mandić AI, Čanadanović VM. Antioxidant activities of different Teucrium montanum L. extracts. Int J Food Sci Technol. 2006;41(6):667–73.
Google Scholar
Buchanan BB, Gruissem W, Jones RL. Editores. Biochemistry & Molecular Biology of plants. 1st ed. Hoboken: Wiley; 2002. p. 1408.
Google Scholar
Pallardy SG. Physiology of Woody plants. Edición: 3. Amsterdam: Academic Press; 2007. p. 464.
Google Scholar
Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473–97.
CAS
Google Scholar
Misra P, Toppo DD, Gupta N, Chakrabarty D, Tuli R. Effect of antioxidants and associate changes in antioxidant enzymes in controlling browning and necrosis of proliferating shoots of elite {Jatropha} curcas {L}. Biomass Bioenergy. 2010;34(12):1861–9.
CAS
Google Scholar
Wellburn AR. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J Plant Physiol. 1994;144(3):307–13.
CAS
Google Scholar
Zapata K, Cortes FB, Rojano BA. Polifenoles y Actividad Antioxidante del Fruto de Guayaba Agria (Psidium araca). Información tecnológica. 2013;24(5):103–12.
CAS
Google Scholar