Balseiro-Romero M, Monterroso C. Phytotoxicity of fuel to crop plants: influence of soil properties, fuel type, and plant tolerance. Toxicol Environ Chem. 2015;8:1–12.
Google Scholar
Luhach J, Chaudhry S. Effect of diesel fuel contamination on seed germination and growth of four agricultural crops. Univers J Environ Res Technol. 2012;4:311–7.
Google Scholar
Amund OO, Nwokoye N. Hydrocarbon degradation potentials of yeast isolates from a polluted lagoon. J Sci Res Dev. 1993;1:65–9.
Lal B, Khanna S. Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J Appl Bacteriol. 1996;4:355–62.
Google Scholar
Gupta S, Pathak B, Fulekar MH. Molecular approaches for biodegradation of polycyclic aromatic hydrocarbon compounds: a review. Rev Environ Sci Biotechnol. 2014;2:241–69.
Google Scholar
Laczi K, Kis A, Horvath B, Maroti G, Hegedus B, Perei K, Rakhely G. Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons. Appl Microbiol Biotechnol. 2015;22:9745–59.
Google Scholar
Balseiro-Romero M, Gkorezis P, Kidd PS, Vangronsveld J, Monterroso C. Enhanced degradation of diesel in the rhizosphere of after inoculation with diesel-degrading and plant growth-promoting bacterial strains. J Environ Qual. 2016;3:924–32.
Google Scholar
Liu Z, Xie W, Li D, Peng Y, Li Z, Liu S. Biodegradation of phenol by bacteria strain Acinetobacter calcoaceticus PA isolated from phenolic wastewater. Int J Environ Res Public Health. 2016;3:300.
Google Scholar
Palanisamy N, Ramya J, Kumar S, Vasanthi N, Chandran P, Khan S. Diesel biodegradation capacities of indigenous bacterial species isolated from diesel contaminated soil. J Environ Health Sci Eng. 2014;1:142.
Google Scholar
Sabirova JS, Ferrer M, Regenhardt D, Timmis KN, Golyshin PN. Proteomic insights into metabolic adaptations in Alcanivorax borkumensis induced by alkane utilization. J Bacteriol. 2006;11:3763–73.
Google Scholar
Sabirova JS, Becker A, Lunsdorf H, Nicaud JM, Timmis KN, Golyshin PN. Transcriptional profiling of the marine oil-degrading bacterium Alcanivorax borkumensis during growth on n-alkanes. FEMS Microbiol Lett. 2011;2:160–8.
Google Scholar
Naether DJ, Slawtschew S, Stasik S, Engel M, Olzog M, Wick LY, Timmis KN, Heipieper HJ. Adaptation of the hydrocarbonoclastic bacterium Alcanivorax borkumensis SK2 to alkanes and toxic organic compounds: a physiological and transcriptomic approach. Appl Environ Microbiol. 2013;14:4282–93.
Google Scholar
Ciric L, Philp JC, Whiteley AS. Hydrocarbon utilization within a diesel-degrading bacterial consortium. FEMS Microbiol Lett. 2010;2:116–22.
Google Scholar
Huang L, Xie J, Lv BY, Shi XF, Li GQ, Liang FL, Lian JY. Optimization of nutrient component for diesel oil degradation by Acinetobacter beijerinckii ZRS. Mar Pollut Bull. 2013;1–2:325–32.
Google Scholar
Mara K, Decorosi F, Viti C, Giovannetti L, Papaleo MC, Maida I, Perrin E, Fondi M, Vaneechoutte M, Nemec A, et al. Molecular and phenotypic characterization of Acinetobacter strains able to degrade diesel fuel. Res Microbiol. 2012;3:161–72.
Google Scholar
Espeche ME, MacCormack WP, Fraile ER. Factors affecting growth of an n-hexadecane degrader Acinetobacter species isolated from a highly polluted urban river. Int Biodeterior Biodegradation. 1994;2:187–96.
Google Scholar
Marín M, Pedregosa A, Ríos S, Laborda F. Study of factors influencing the degradation of heating oil by Acinetobacter calcoaceticus MM5. Int Biodeterior Biodegradation. 1996;2:69–75.
Google Scholar
Akinde SB, Obire O. Aerobic heterotrophic bacteria and petroleum-utilizing bacteria from cow dung and poultry manure. World J Microbiol Biotechnol. 2008;9:1999–2002.
Google Scholar
Adebusoye SA, Ilori MO, Amund OO, Teniola OD, Olatope SO. Microbial degradation of petroleum hydrocarbons in a polluted tropical stream. World J Microbiol Biotechnol. 2007;8:1149–59.
Google Scholar
Fischer R, Bleichrodt FS, Gerischer UC. Aromatic degradative pathways in Acinetobacter baylyi underlie carbon catabolite repression. Microbiology. 2008;Pt 10:3095–103.
Google Scholar
Albarracin VH, Pathak GP, Douki T, Cadet J, Borsarelli CD, Gartner W, Farias ME. Extremophilic Acinetobacter strains from high-altitude lakes in Argentinean Puna: remarkable UV-B resistance and efficient DNA damage repair. Orig Life Evol Biosph. 2012;2–3:201–21.
Google Scholar
Jawad A, Seifert H, Snelling AM, Heritage J, Hawkey PM. Survival of Acinetobacter baumannii on dry surfaces: comparison of outbreak and sporadic isolates. J Clin Microbiol. 1998;7:1938–41.
Google Scholar
Dahal RH, Chaudhary DK, Kim J. Acinetobacter halotolerans sp. nov., a novel halotolerant, alkalitolerant, and hydrocarbon degrading bacterium, isolated from soil. Arch Microbiol. 2017;5:701–10.
Google Scholar
Fatajeva E, Gailiūtė I, Paliulis D, Grigiškis S. The use of Acinetobacter sp. for oil hydrocarbon degradation in saline waters, vol. 60; 2014.
Google Scholar
Yamahira K, Hirota K, Nakajima K, Morita N, Nodasaka Y, Yumoto I. Acinetobacter sp. strain Ths, a novel psychrotolerant and alkalitolerant bacterium that utilizes hydrocarbon. Extremophiles. 2008;5:729–34.
Google Scholar
Davoodi SM, Miri S, Taheran M, Brar SK, Galvez-Cloutier R, Martel R. Bioremediation of unconventional oil contaminated ecosystems under natural and assisted conditions: a review. Environ Sci Technol. 2020;54:2054–67.
CAS
PubMed
Google Scholar
Cao W, Li J, Joksimovic D. Characteristics of urban chemical spills in southern Ontario. Water Qual Res J Can. 2012;47:166–77.
CAS
Google Scholar
Ho MT, Weselowski B, Yuan ZC. Complete genome sequence of Acinetobacter calcoaceticus CA16, a bacterium capable of degrading diesel and lignin. Genome Announc. 2017;24:e00494–17.
Google Scholar
Arakawa K, Tomita M. The GC skew index: a measure of genomic compositional asymmetry and the degree of replicational selection. Evol Bioinformatics Online. 2007;3:159–68.
Google Scholar
Bouvet PJM, Grimont PAD. Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii. Int J Syst Bacteriol. 1986;2:228–40.
Google Scholar
Lee HJ, Lee SS. Acinetobacter kyonggiensis sp. nov., a beta-glucosidase-producing bacterium, isolated from sewage treatment plant. J Microbiol. 2010;6:754–9.
Google Scholar
Lee M, Woo SG, Ten LN. Characterization of novel diesel-degrading strains Acinetobacter haemolyticus MJ01 and Acinetobacter johnsonii MJ4 isolated from oil-contaminated soil. World J Microbiol Biotechnol. 2012;5:2057–67.
Google Scholar
Bohlin J, Pettersson JHO. Evoluion of genomic base composition: from single-cell microbes to multicellular animals. Comput Struct Biotechnol J. 2019;17:362–70.
CAS
PubMed
PubMed Central
Google Scholar
Svensson EI, Berger D. The role of mutation bias in adaptive evolution. Trends Ecol Evol. 2019;34:422–34.
PubMed
Google Scholar
Mateo-Estrada V, Graña-Miraglia L, López-Leal G, Castillo-Ramírez S, Delaye L. Phylogenomics reveals clear cases of misclassification and genus-wide phylogenetic markers for Acinetobacter. Genome Biol Evol. 2019;11:2531–41.
PubMed
PubMed Central
Google Scholar
Gerner-Smidt P, Tjernberg I, Ursing J. Reliability of phenotypic tests for identification of Acinetobacter species. J Clin Microbiol. 1991;29:277–82.
CAS
PubMed
PubMed Central
Google Scholar
Šedo O, Nemec A, Křížová L, Kačalová M, Zdráhal Z. Improvement of MALDI-TOFMS profiling for the differentiation of species within the Acinetobacter calcoaceticus–Acinetobacter baumannii complex. Syst Appl Microbiol. 2013;36:572–8.
PubMed
Google Scholar
Sepic E, Trier C, Leskovsek H. Biodegradation studies of selected hydrocarbons from diesel oil. Analyst. 1996;10:1451–6.
Google Scholar
Zhang Q, Wang D, Li M, Xiang WN, Achal V. Isolation and characterization of diesel degrading bacteria, Sphingomonas sp. and Acinetobacter junii from petroleum contaminated soil. Front Earth Sci. 2014;8:58–63.
CAS
Google Scholar
Balseiro-Romero M, Gkorezis P, Kidd PS, Van Hamme J, Weyens N, Monterroso C, Vangronsveld J. Characterization and degradation potential of diesel-degrading bacterial strains for application in bioremediation. Int J Phytoremediation. 2017;19:955–63.
CAS
PubMed
Google Scholar
Diallo MM, Vural C, Şahar U, Ozdemir G. Kurstakin molecules facilitate diesel oil assimilation by Acinetobacter haemolyticus strain 2SA through overexpression of alkane hydroxylase genes. Environ Technol. 2019; in press.
Nkem BM, Halimoon N, Yusoff FM, Johari WLW, Zakaria MP, Medipally SR, Kannan N. Isolation, identification and diesel-oil biodegradation capacities of indigenous hydrocarbon-degrading strains of Cellulosimicrobium cellulans and Acinetobacter baumannii from tarball at Terengganu beach, Malaysia. Mar Pollut Bull. 2016;107:261–8.
CAS
PubMed
Google Scholar
Chen Y, Yu B, Lin J, Naidu R, Chen Z. Simultaneous adsorption and biodegradation (SAB) of diesel oil using immobilized Acinetobacter venetianus on porous material. Chem Eng J. 2016;289:463–70.
CAS
Google Scholar
Luo Q, Zhang JG, Shen XR, Fan ZQ, He Y, Hou DY. Isolation and characterization of marine diesel oil-degrading Acinetobacter sp. strain Y2. Ann Microbiol. 2013;63:633–40.
CAS
Google Scholar
Lee M, Woo SG, Ten LN. Characterization of novel diesel-degrading strains Acinetobacter haemolyticus MJ01 and Acinetobacter johnsonii MJ4 isolated from oil-contaminated soil. World J Microbiol Biotechnol. 2012;28:2057–67.
CAS
PubMed
Google Scholar
Van Hamme JD, Singh A, Ward OP. Recent advances in petroleum microbiology. Microbiol Mol Biol Rev. 2003;4:503–49.
Google Scholar
Rojo F. Enzymes for aerobic degradation of alkanes; 2010. p. 781–97.
Google Scholar
Nie Y, Chi CQ, Fang H, Liang JL, Lu SL, Lai GL, Tang YQ, Wu XL. Diverse alkane hydroxylase genes in microorganisms and environments. Sci Rep. 2014;4:4968.
CAS
PubMed
PubMed Central
Google Scholar
Finnerty WR. Proceedings of the world conference on biotechnology for the fats and oils industry. In: Society AOC, editor. Journal of the American Oil Chemists' Society. Champaign: The Society; 1988. p. 184–8.
Google Scholar
Sakai Y, Maeng JH, Kubota S, Tani A, Tani Y, Kato N. A non-conventional dissimilation pathway for long chain n-alkanes in Acinetobacter sp. M-1 that starts with a dioxygenase reaction. J Ferment Bioeng. 1996;4:286–91.
Google Scholar
Nakar D, Gutnick DL. Analysis of the wee gene cluster responsible for the biosynthesis of the polymeric bioemulsifier from the oil-degrading strain Acinetobacter lwoffii RAG-1. Microbiology. 2001;Pt 7:1937–46.
Google Scholar
Geissdorfer W, Kok RG, Ratajczak A, Hellingwerf KJ, Hillen W. The genes rubA and rubB for alkane degradation in Acinetobacter sp. strain ADP1 are in an operon with estB, encoding an esterase, and oxyR. J Bacteriol. 1999;14:4292–8.
Google Scholar
Whyte LG, Smits TH, Labbe D, Witholt B, Greer CW, van Beilen JB. Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531. Appl Environ Microbiol. 2002;12:5933–42.
Google Scholar
Parche S, Geissdorfer W, Hillen W. Identification and characterization of xcpR encoding a subunit of the general secretory pathway necessary for dodecane degradation in Acinetobacter calcoaceticus ADP1. J Bacteriol. 1997;14:4631–4.
Google Scholar
Hassan IA, Mohamedelhassan EE, Yanful EK, Weselowski B, Yuan ZC. Isolation and characterization of novel bacterial strains for integrated solar-bioelectrokinetic of soil contaminated with heavy petroleum hydrocarbons. Chemosphere. 2019;237:124514.
CAS
PubMed
Google Scholar
Atlas RM, Cerniglia CE. Bioremediation of petroleum pollutants. BioScience. 1995;5:332–8.
Google Scholar
Yuste L, Corbella ME, Turiegano MJ, Karlson U, Puyet A, Rojo F. Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing. FEMS Microbiol Ecol. 2000;1:69–75.
Google Scholar
Kubota K, Koma D, Matsumiya Y, Chung SY, Kubo M. Phylogenetic analysis of long-chain hydrocarbon-degrading bacteria and evaluation of their hydrocarbon-degradation by the 2,6-DCPIP assay. Biodegradation. 2008;5:749–57.
Google Scholar
Darling AE, Mau B, Perna NT. ProgressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One. 2010;6:e11147.
Google Scholar
Berriman M, Rutherford K. Viewing and annotating sequence data with Artemis. Brief Bioinform. 2003;2:124–32.
Google Scholar
Meier-Kolthoff JP, Goker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019;1:2182.
Google Scholar
Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics. 2013;14:60.
PubMed
PubMed Central
Google Scholar
Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol. 2015;10:2798–800.
Google Scholar
Kreft L, Botzki A, Coppens F, Vandepoele K, Van Bel M. PhyD3: a phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics. 2017;18:2946–7.
Google Scholar
Sheng XF. Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem. 2005;10:1918–22.
Google Scholar
Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett. 1999;1:265–70.
Google Scholar
Barnhart DM, Su S, Baccaro BE, Banta LM, Farrand SK. CelR, an ortholog of the diguanylate cyclase PleD of Caulobacter, regulates cellulose synthesis in Agrobacterium tumefaciens. Appl Environ Microbiol. 2013;23:7188–202.
Google Scholar
Faizi S, Sumbul S, Versiani MA, Saleem R, Sana A, Siddiqui H. GC/GCMS analysis of the petroleum ether and dichloromethane extracts of Moringa oleifera roots. Asian Pac J Trop Biomed. 2014;8:650–4.
Google Scholar
Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G. XCMS online: a web-based platform to process untargeted metabolomic data. Anal Chem. 2012;11:5035–9.
Google Scholar
Wanichthanarak K, Fan S, Grapov D, Barupal DK, Fiehn O. Metabox: a toolbox for metabolomic data analysis, interpretation and integrative exploration. PLoS One. 2017;1:e0171046.
Google Scholar