Bourtzis K, Miller T, editors. Insect symbiosis. Florida: CRC Press, Taylor and Francis Group, LLC; 2003.
Google Scholar
Pontes MH, Dale C. Culture and manipulation of insect facultative symbionts. Trends Microbiol. 2006;14:406–12.
Article
CAS
PubMed
Google Scholar
Aharon Y, Pasternak Z, Ben Yosef M, Behar A, Lauzon C, Yuval B, et al. Phylogenetic, metabolic, and taxonomic diversities shape Mediterranean fruit fly microbiotas during ontogeny. Appl Environ Microbiol. 2013;79:303–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Behar A, Yuval B, Jurkevitch E. Gut bacterial communities in the Mediterranean fruit fly (Ceratitis capitata) and their impact on host longevity. J Insect Physiol. 2008;54:1377–83.
Article
CAS
PubMed
Google Scholar
Ben-Yosef M, Pasternak Z, Jurkevitch E, Yuval B. Symbiotic bacteria enable olive fly larvae to overcome host defences. R Soc Open Sci. 2015;2:150170.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ben-Yosef M, Pasternak Z, Jurkevitch E, Yuval B. Symbiotic bacteria enable olive flies (Bactrocera oleae) to exploit intractable sources of nitrogen. J Evol Biol. 2014;27:2695–705.
Article
CAS
PubMed
Google Scholar
Ben-Yosef M, Behar A, Jurkevitch E, Yuval B. Bacteria–diet interactions affect longevity in the medfly –Ceratitis capitata. J Appl Entomol. 2008;132:690–4.
Article
Google Scholar
Bourtzis K, Miller T, editors. Insect symbiosis 3. Florida: CRC Press, Taylor and Francis Group, LLC; 2009.
Google Scholar
Bourtzis K, Miller T, editors. Insect symbiosis 2. Florida: CRC Press, Taylor and Francis Group, LLC; 2006.
Google Scholar
Brownlie JC, Johnson KN. Symbiont-mediated protection in insect hosts. Trends Microbiol. 2009;17:348–54.
Article
CAS
PubMed
Google Scholar
Douglas AE. Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol. 2015;60:17–34.
Article
CAS
PubMed
Google Scholar
Douglas AE. The microbial dimension in insect nutritional ecology. Funct Ecol. 2009;23:38–47.
Article
Google Scholar
Engel P, Moran NA. The gut microbiota of insects – diversity in structure and function. FEMS Microbiol Rev. 2013;37:699–735.
Article
CAS
PubMed
Google Scholar
Minard G, Mavingui P, Moro CV. Diversity and function of bacterial microbiota in the mosquito holobiont. Parasit Vectors. 2013;6:146.
Article
PubMed
PubMed Central
Google Scholar
Montllor CB, Maxmen A, Purcell AH. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entomol. 2002;27:189–95.
Article
Google Scholar
Stouthamer R, JAJ B, GDD H. Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol. 1999;53:71–102.
Article
CAS
PubMed
Google Scholar
Zchori-Fein E, Bourtzis K, editors. Manipulative tenants: bacteria associated with arthropods. Florida: CRC Press, Taylor and Francis Group, LLC; 2011.
Google Scholar
Xie J, Vilchez I, Mateos M. Spiroplasma bacteria enhance survival of Drosophila hydei attacked by the parasitic wasp Leptopilina heterotoma. PLoS One. 2010;5:e12149.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cheng D, Guo Z, Riegler M, Xi Z, Liang G, Xu Y. Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome. 2017;5:13.
Article
PubMed
PubMed Central
Google Scholar
De Meyer M, Delatte H, Mwatawala M, Quilici S, Vayssières J-F, Virgilio M. A review of the current knowledge on Zeugodacus cucurbitae (Coquillett) (Diptera, Tephritidae) in Africa, with a list of species included in Zeugodacus. ZooKeys. 2015;540:539–57.
Article
Google Scholar
Drew R. Taxonomy. In: Drew R, Hooper G, Bateman M, editors. Economic fruit flies of the South Pacific region. Second ed. Department of Primary Industries Publishing, Brisbane: Australia; 1982. p. 1–97.
Google Scholar
Drew R. The tropical fruit flies (Diptera: Tephritidae: Dacinae) of the Australasian and Oceanian regions. Mem Qld Mus. 1989;26:521.
Google Scholar
Dhillon MK, Singh R, Naresh JS, Sharma HC. The melon fruit fly, Bactrocera cucurbitae: a review of its biology and management. J Insect Sci. 2005;5:40.
Drew R, Romig MC. Tropical fruit flies (Tephritidae Dacinae) of south-East Asia: Indomalaya to north-West Australasia: Wallingford CABI; 2013.
Clarke AR, Allwood A, Chinajariyawong A, Drew RAI, Hengsawad C, Jirasurat M, et al. Seasonal abundance and host use patterns of seven Bactrocera Macquart species (Diptera: Tephritidae) in Thailand and peninsular Malaysia. Raffles Bull Zool. 2001;49:207–20.
Google Scholar
Vayssières J, Rey J-Y, Traoré L. Distribution and host plants of Bactrocera cucurbitae in west and Central Africa. Fruits. 2007;62:391–6.
Article
Google Scholar
Vayssières J, Carel Y, Coubes M, Duyck PF. Development of immature stages and comparative demography of two cucurbit-attacking fruit flies in Reunion island: Bactrocera cucurbitae and Dacus ciliatus (Diptera Tephritidae). Environ Entomol. 2008;37:307–14.
Article
PubMed
Google Scholar
Hafsi A, Facon B, Ravigné V, Chiroleu F, Quilici S, Chermiti B, et al. Host plant range of a fruit fly community (Diptera: Tephritidae): does fruit composition influence larval performance? BMC Ecol. 2016;16:40.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dyck V, Hendrichs J. Robinson a, editors. Springer Netherlands: Sterile insect technique - principles and practice in area-wide; 2005.
Google Scholar
Lees RS, Gilles JR, Hendrichs J, Vreysen MJ, Bourtzis K. Back to the future: the sterile insect technique against mosquito disease vectors. Curr Opin Insect Sci. 2015;10(Supplement C):156–62.
Article
PubMed
Google Scholar
Ben Ami E, Yuval B, Jurkevitch E. Manipulation of the microbiota of mass-reared Mediterranean fruit flies Ceratitis capitata (Diptera: Tephritidae) improves sterile male sexual performance. ISME J. 2010;4:28–37.
Article
PubMed
Google Scholar
Lauzon CR, Potter SE. Description of the irradiated and nonirradiated midgut of Ceratitis capitata Wiedemann (Diptera: Tephritidae) and Anastrepha ludens Loew (Diptera: Tephritidae) used for sterile insect technique. J Pest Sci. 2012;85:217–26.
Article
Google Scholar
Augustinos AA, Kyritsis GA, Papadopoulos NT, Abd-Alla AMM, Cáceres C, Bourtzis K. Exploitation of the medfly gut microbiota for the enhancement of sterile insect technique: use of Enterobacter sp. in larval diet-based probiotic applications. PLoS One. 2015;10:e0136459.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gavriel S, Jurkevitch E, Gazit Y, Yuval B. Bacterially enriched diet improves sexual performance of sterile male Mediterranean fruit flies. J Appl Entomol. 2011;135:564–73.
Article
Google Scholar
Hamden H, Guerfali MM, Fadhl S, Saidi M, Chevrier C. Fitness improvement of mass-reared sterile males of Ceratitis capitata (Vienna 8 strain) (Diptera: Tephritidae) after gut enrichment with probiotics. J Econ Entomol. 2013;106:641–7.
Article
CAS
PubMed
Google Scholar
Kyritsis GA, Augustinos AA, Cáceres C, Bourtzis K. Medfly gut microbiota and enhancement of the sterile insect technique: Similarities and differences of Klebsiella oxytoca and Enterobacter sp. AA26 probiotics during the larval and adult stages of the VIENNA 8D53+ genetic sexing strain. Front Microbiol. 2017;8:2064.
Niyazi N, Lauzon CR, Shelly TE. Effect of probiotic adult diets on fitness components of sterile male Mediterranean fruit flies (Diptera: Tephritidae) under laboratory and field cage conditions. J Econ Entomol. 2004;97:1570–80.
Article
PubMed
Google Scholar
Yao M, Zhang H, Cai P, Gu X, Wang D, Ji Q. Enhanced fitness of a Bactrocera cucurbitae genetic sexing strain based on the addition of gut-isolated probiotics (Enterobacter spec.) to the larval diet. Entomol Exp Appl. 2017;162:197–203.
Article
Google Scholar
Ben-Yosef M, Aharon Y, Jurkevitch E, Yuval B. Give us the tools and we will do the job: symbiotic bacteria affect olive fly fitness in a diet-dependent fashion. Proc R Soc B-Biol Sci. 2010;277:1545–52.
Article
CAS
Google Scholar
Bing X, Gerlach J, Loeb G, Buchon N. Nutrient-dependent impact of microbes on Drosophila suzukii Development. mBio. 2018;9:e02199–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A. Bacterial communities of diverse Drosophila species: ecological context of a host–microbe model system. PLoS Genet. 2011;7:e1002272.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kane MD, Breznak JA. Effect of host diet on production of organic acids and methane by cockroach gut bacteria. Appl Environ Microbiol. 1991;57:2628–34.
CAS
PubMed
PubMed Central
Google Scholar
Morrow JL, Frommer M, Shearman DCA, Riegler M. The microbiome of field-caught and laboratory-adapted Australian Tephritid fruit fly species with different host plant use and specialisation. Microb Ecol. 2015;70:498–508.
Article
CAS
PubMed
Google Scholar
Santo Domingo JW, Kaufman MG, Klug MJ, Holben WE, Harris D, Tiedje JM. Influence of diet on the structure and function of the bacterial hindgut community of crickets. Mol Ecol. 1998;7:761–7.
Article
Google Scholar
Vacchini V, Gonella E, Crotti E, Prosdocimi EM, Mazzetto F, Chouaia B, et al. Bacterial diversity shift determined by different diets in the gut of the spotted wing fly Drosophila suzukii is primarily reflected on acetic acid bacteria. Environ Microbiol Rep. 2017;9:91–103.
Article
CAS
PubMed
Google Scholar
Wang H, Jin L, Zhang H. Comparison of the diversity of the bacterial communities in the intestinal tract of adult Bactrocera dorsalis from three different populations. J Appl Microbiol. 2011;110:1390–401.
Article
CAS
PubMed
Google Scholar
Wong AC-N, Chaston JM, Douglas AE. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. ISME J. 2013;7:1922–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andongma AA, Wan L, Dong Y-C, Li P, Desneux N, White JA, et al. Pyrosequencing reveals a shift in symbiotic bacteria populations across life stages of Bactrocera dorsalis. Sci Rep. 2015;5:9470.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yong H-S, Song S-L, Chua K-O, Lim P-E. High diversity of bacterial communities in developmental stages of Bactrocera carambolae (Insecta: Tephritidae) revealed by Illumina MiSeq sequencing of 16S rRNA gene. Curr Microbiol. 2017;74:1076–82.
Article
CAS
PubMed
Google Scholar
Zhao X, Zhang X, Chen Z, Wang Z, Lu Y, Cheng D. The divergence in bacterial components associated with Bactrocera dorsalis across developmental stages. Front Microbiol. 2018;9:114.
Behar A, Jurkevitch E, Yuval B. Bringing back the fruit into fruit fly–bacteria interactions. Mol Ecol. 2008;17:1375–86.
Article
CAS
PubMed
Google Scholar
Hadapad AB, Prabhakar CS, Chandekar SC, Tripathi J, Hire RS. Diversity of bacterial communities in the midgut of Bactrocera cucurbitae (Diptera: Tephritidae) populations and their potential use as attractants. Pest Manag Sci. 2016;72:1222–30.
Article
CAS
PubMed
Google Scholar
Gujjar NR, Govindan S, Verghese A, Subramaniam S, More R. Diversity of the cultivable gut bacterial communities associated with the fruit flies Bactrocera dorsalis and Bactrocera cucurbitae (Diptera: Tephritidae). Phytoparasitica. 2017;45:453–60.
Yuval B, Ben-Ami E, Behar A, Ben-Yosef M, Jurkevitch E. The Mediterranean fruit fly and its bacteria – potential for improving sterile insect technique operations. J Appl Entomol. 2013;137:39–42.
Article
Google Scholar
Förster M, Klimpel S, Mehlhorn H, Sievert K, Messler S, Pfeffer K. Pilot study on synanthropic flies (e.g. Musca, Sarcophaga, Calliphora, Fannia, Lucilia, Stomoxys) as vectors of pathogenic microorganisms. Parasitol Res. 2007;101:243–6.
Article
PubMed
Google Scholar
Gupta AK, Nayduch D, Verma P, Shah B, Ghate HV, Patole MS, et al. Phylogenetic characterization of bacteria in the gut of house flies (Musca domestica L.). FEMS Microbiol Ecol. 2012;79:581–93.
Article
CAS
PubMed
Google Scholar
Khalil S, Jacobson E, Chambers MC, Lazzaro BP. Systemic bacterial infection and immune defense phenotypes in Drosophila melanogaster. JoVE J Vis Exp. 2015;99:e52613–3.
Gavriel S, Gazit Y, Yuval B. Effect of diet on survival, in the laboratory and the field, of sterile male Mediterranean fruit flies. Entomol Exp Appl. 2010;135:96–104.
Article
CAS
Google Scholar
Nahar G, Howlader AJ, Rahman R. Radiation sterilization and mating competitiveness of melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) male in relation to sterile insect release method. Pak J Biol Sci. 2006;9:2478–82.
Article
Google Scholar
Augustinos AA, Santos-Garcia D, Dionyssopoulou E, Moreira M, Papapanagiotou A, Scarvelakis M, et al. Detection and characterization of Wolbachia infections in natural populations of aphids: is the hidden diversity fully unraveled? PLoS One. 2011;6:e28695.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1.
Article
CAS
PubMed
Google Scholar
Ntougias S, Polkowska Ż, Nikolaki S, Dionyssopoulou E, Stathopoulou P, Doudoumis V, et al. Bacterial community structures in freshwater polar environments of Svalbard. Microbes Environ. 2016;31:401–9.
Article
PubMed
PubMed Central
Google Scholar
Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. PANDAseq: paired-end assembler for Illumina sequences. BMC Bioinformatics. 2012;13:31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
Article
CAS
PubMed
Google Scholar
Chao A. Non-parametric estimation of the classes in a population. Scand J Stat. 1984;11:265–70.
Google Scholar
Chao A, Lee S-M. Estimating the number of classes via sample coverage. J Am Stat Assoc. 1992;87:210–7.
Article
Google Scholar
Bray JR, Curtis JT. An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr. 1957;27:325–49.
Article
Google Scholar
Gower JC. Principal coordinates analysis. In: Encyclopedia of biostatistics. Hoboken: John Wiley & Sons, Ltd; 2005.
Anderson MJ, Willis TJ. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology. 2003;84:511–25.
Article
Google Scholar
Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
Google Scholar
Clarke K, Gorley R. PRIMER v6: user manual/tutorial. Primer-E Plymouth. 2006:192.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
Google Scholar