Liu K. Soybeans: chemistry, technology, and utilization. 1st ed. US: Springer; 1997.
Book
Google Scholar
Hudson LC, Lambirth KC, Bost KL, Piller KJ. Advancements in transgenic soy: from field to bedside. In: Board JE, editor. A comprehensive survey of international soybean research - genetics, physiology, agronomy and nitrogen relationships. InTech Open: InTech; 2013. p. 447-474
Bazalo GR, Joshi AV, Germak J. Comparison of human growth hormone products’ cost in pediatric and adult patients. A budgetary impact model. Manag Care. 2007;16:45–51.
Google Scholar
Franklin SL, Geffner ME. Growth hormone: the expansion of available products and indications. Endocrinol Metab Clin North Am. 2009;38:587–611.
Article
CAS
Google Scholar
Powell R, Hudson LC, Lambirth KC, Luth D, Wang K, Bost KL, et al. Recombinant expression of homodimeric 660 kDa human thyroglobulin in soybean seeds: an alternative source of human thyroglobulin. Plant Cell Rep. 2011;30:1327–38.
Article
CAS
Google Scholar
Hudson LC, Bost KL, Piller KJ. Optimizing recombinant protein expression in soybean. In: Sudaric A, editor. Soybean - molecular aspects of breeding. InTech Open: InTech; 2011. p. 19-42
Oakes JL, Bost KL, Piller KJ. Stability of a soybean seed-derived vaccine antigen following long-term storage, processing and transport in the absence of a cold chain. J Sci Food Agr. 2009;89:2191–9.
Article
CAS
Google Scholar
Bost KL, Lambirth KC, Hudson LC, Piller KJ. Soybean-derived thyroglobulin as an analyte specific reagent for in vitro diagnostic tests and devices. In: Berhardt LV, editor. Advances in medicine and biology. New York: Nova Biomedical; 2014. p. 23–40.
Google Scholar
Hudson LC, Seabolt BS, Odle J, Bost KL, Stahl CH, Piller KJ. Sublethal staphylococcal enterotoxin B challenge model in pigs to evaluate protection following immunization with a soybean-derived vaccine. Clin Vaccine Immunol. 2013;20:24–32.
Article
CAS
Google Scholar
Bost KL, Piller KJ. Protein expression systems: why soybean seeds? In: Sudaric A, editor. Soybean - molecular aspects of breeding. Intech Open: InTech; 2011. p. 3-18
Hudson LC, Garg R, Bost KL, Piller KJ. Soybean seeds: a practical host for the production of functional subunit vaccines. Biomed Res Int. 2014; doi:10.1155/2014/340804
Piller KJ, Clemente TE, Jun SM, Petty CC, Sato S, Pascual DW, et al. Expression and immunogenicity of an Escherichia coli K99 fimbriae subunit antigen in soybean. Planta. 2005;222:6–18.
Article
CAS
Google Scholar
Ding SH, Huang LY, Wang YD, Sun HC, Xiang ZH. High-level expression of basic fibroblast growth factor in transgenic soybean seeds and characterization of its biological activity. Biotechnol Lett. 2006;28:869–75.
Article
CAS
Google Scholar
Herman RA, Ladics GS. Endogenous allergen upregulation: transgenic vs. traditionally bred crops. Food Chem Toxicol. 2011;49:2667–9.
Article
CAS
Google Scholar
Simo C, Ibanez C, Valdes A, Cifuentes A, Garcia-Canas V. Metabolomics of genetically modified crops. Int J Mol Sci. 2014; doi:10.3390/ijms151018941.
Zhang X, Zhao P, Wu K, Zhang Y, Peng M, Liu Z. Compositional equivalency of RNAi-mediated virus-resistant transgenic soybean and its nontransgenic counterpart. J Agric Food Chem. 2014;62:4475–9.
Article
CAS
Google Scholar
Cheng KC, Beaulieu J, Iquira E, Belzile FJ, Fortin MG, Stromvik MV. Effect of transgenes on global gene expression in soybean is within the natural range of variation of conventional cultivars. J Agric Food Chem. 2008;56:3057–67.
Article
CAS
Google Scholar
Beale MH, Ward JL, Baker JM. Establishing substantial equivalence: metabolomics. Methods Mol Biol. 2009;478:289–303.
Article
Google Scholar
Batista R, Saibo N, Lourenco T, Oliveira MM. Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion. Proc Natl Acad Sci U S A. 2008;105:3640–5.
Article
CAS
Google Scholar
Baudo MM, Lyons R, Powers S, Pastori GM, Edwards KJ, Holdsworth MJ, et al. Transgenesis has less impact on the transcriptome of wheat grain than conventional breeding. Plant Biotechnol J. 2006;4:369–80.
Article
CAS
Google Scholar
Ricroch AE, Berge JB, Kuntz M. Evaluation of genetically engineered crops using transcriptomic, proteomic, and metabolomic profiling techniques. Plant Physiol. 2011;155:1752–61.
Article
CAS
Google Scholar
Catchpole GS, Beckmann M, Enot DP, Mondhe M, Zywicki B, Taylor J, et al. Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proc Natl Acad Sci U S A. 2005;102:14458–62.
Article
CAS
Google Scholar
Baker JM, Hawkins ND, Ward JL, Lovegrove A, Napier JA, Shewry PR, et al. A metabolomic study of substantial equivalence of field-grown genetically modified wheat. Plant Biotechnol J. 2006;4:381–92.
Article
CAS
Google Scholar
Kusano M, Redestig H, Hirai T, Oikawa A, Matsuda F, Fukushima A, et al. Covering chemical diversity of genetically-modified tomatoes using metabolomics for objective substantial equivalence assessment. PloS One. 2011; doi:10.1371/journal.pone.0016989.
Natarajan S, Luthria D, Bae H, Lakshman D, Mitra A. Transgenic soybeans and soybean protein analysis: an overview. J Agric Food Chem. 2013;61:11736–43.
Article
CAS
Google Scholar
Lepping MD, Herman RA, Potts BL. Compositional equivalence of DAS-444O6-6 (AAD-12 + 2mEPSPS + PAT) herbicide-tolerant soybean and nontransgenic soybean. J Agric Food Chem. 2013;61:11180–90.
Article
CAS
Google Scholar
Barbosa H, Arruda SC, Azevedo R, Arruda MZ. New insights on proteomics of transgenic soybean seeds: evaluation of differential expressions of enzymes and proteins. Anal Bioanal Chem. 2012;402:299–314.
Article
CAS
Google Scholar
Snell C, Bernheim A, Bergé J-B, Kuntz M, Pascal G, Paris A, et al. Assessment of the health impact of GM plant diets in long-term and multigenerational animal feeding trials: A literature review. Food Chem Toxicol. 2012;50:1134–48.
Article
CAS
Google Scholar
Pitzschke A, Hirt H. New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO J. 2010;29:1021–32.
Article
CAS
Google Scholar
Houshyani B, van der Krol AR, Bino RJ, Bouwmeester HJ. Assessment of pleiotropic transcriptome perturbations in Arabidopsis engineered for indirect insect defence. BMC Plant Biol. 2014;14:170.
Article
Google Scholar
Kuiper HA, Kok EJ, Engel KH. Exploitation of molecular profiling techniques for GM food safety assessment. Curr Opin Biotechnol. 2003;14:238–43.
Article
CAS
Google Scholar
Rynda-Apple A, Huarte E, Maddaloni M, Callis G, Skyberg JA, Pascual DW. Active immunization using a single dose immunotherapeutic abates established EAE via IL-10 and regulatory T cells. Eur J Immunol. 2011;41:313–23.
Article
CAS
Google Scholar
Paz MM, Martinez JC, Kalvig AB, Fonger TM, Wang K. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep. 2006;25:206–13.
Article
CAS
Google Scholar
Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463:178–83.
Article
CAS
Google Scholar
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25:1105–11.
Article
CAS
Google Scholar
Nordberg H, Cantor M, Dusheyko S, Hua S, Poliakov A, Shabalov I, et al. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res. 2014; doi:10.1093/nar/gkt1069.
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012; doi:10.1093/nar/gkr944.
Leinonen R, Sugawara H, Shumway M, International Nucleotide Sequence Database C. The sequence read archive. Nucleic Acids Res. 2011; doi:10.1093/nar/gkq1019
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.
Article
CAS
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article
CAS
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B Met. 1995;57:289–300.
Google Scholar
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562–78.
Article
CAS
Google Scholar
Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–10.
Article
CAS
Google Scholar
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010; doi:10.1186/gb-2010-11-2-r14.
Du Z, Zhou X, Ling Y, Zhang Z, Su Z. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010; doi:10.1093/nar/gkq310.
Nicol JW, Helt GA, Blanchard Jr SG, Raja A, Loraine AE. The integrated genome browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics. 2009;25:2730–1.
Article
CAS
Google Scholar
Nookaew I, Papini M, Pornputtapong N, Scalcinati G, Fagerberg L, Uhlen M, et al. A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Res. 2012;40:10084–97.
Article
CAS
Google Scholar
Kvam VM, Liu P, Si Y. A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. Am J Bot. 2012;99:248–56.
Article
Google Scholar
Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, et al. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol. 2013; doi:10.1186/gb-2013-14-9-r95.
Seyednasrollah F, Laiho A, Elo LL. Comparison of software packages for detecting differential expression in RNA-seq studies. Brief Bioinform. 2015;16:59–70.
Article
Google Scholar
Soneson C, Delorenzi M. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics. 2013; doi:10.1186/1471-2105-14-91.
Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques. 2003;34:374–8.
CAS
Google Scholar
Rang A, Linke B, Jansen B. Detection of RNA variants transcribed from the transgene in roundup ready soybean. Eur Food Res Technol. 2005;220:438–43.
Article
CAS
Google Scholar
Ichikawa T, Nakazawa M, Kawashima M, Muto S, Gohda K, Suzuki K, et al. Sequence database of 1172 T-DNA insertion sites in Arabidopsis activation-tagging lines that showed phenotypes in T1 generation. Plant J. 2003;36:421–9.
Article
CAS
Google Scholar
Schoen DJ, David JL, Bataillon TM. Deleterious mutation accumulation and the regeneration of genetic resources. Proc Natl Acad Sci U S A. 1998;95:394–9.
Article
CAS
Google Scholar
Molinier J, Ries G, Zipfel C, Hohn B. Transgeneration memory of stress in plants. Nature. 2006;442:1046–9.
Article
CAS
Google Scholar
Forsbach A, Schubert D, Lechtenberg B, Gils M, Schmidt R. A comprehensive characterization of single-copy T-DNA insertions in the Arabidopsis thaliana genome. Plant Mol Biol. 2003;52:161–76.
Article
CAS
Google Scholar
Latham JR, Wilson AK, Steinbrecher RA. The mutational consequences of plant transformation. J Biomed Biotechnol. 2006; doi:10.1155/JBB/2006/25376.
Vaucheret H, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, et al. Transgene-induced gene silencing in plants. Plant J. 1998;16:651–9.
Article
CAS
Google Scholar
Beers E, Woffenden B, Zhao C. Plant proteolytic enzymes: possible roles during programmed cell deat. In: Lam E, Fukuda H, Greenberg J, editors. Programmed cell death in higher plants. Netherlands: Springer; 2000. p. 155–71.
Chapter
Google Scholar
Solomon M, Belenghi B, Delledonne M, Menachem E, Levine A. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell. 1999;11:431–44.
Article
CAS
Google Scholar
Botella MA, Xu Y, Prabha TN, Zhao Y, Narasimhan ML, Wilson KA, et al. Differential expression of soybean cysteine proteinase inhibitor genes during development and in response to wounding and methyl jasmonate. Plant Physiol. 1996;112:1201–10.
Article
CAS
Google Scholar
Antão CM, Malcata FX. Plant serine proteases: biochemical, physiological and molecular features. Plant Physiol Biochem. 2005;43:637–50.
Article
Google Scholar
Singh A, Meena M, Kumar D, Dubey AK, Hassan I. Structural and functional analysis of various globulin proteins from soy seed. Crit Rev Food Sci Nutr. 2015;55:1491–502.
Article
CAS
Google Scholar
Russell DA, Spatola LA, Dian T, Paradkar VM, Dufield DR, Carroll JA, et al. Host limits to accurate human growth hormone production in multiple plant systems. Biotechnol Bioeng. 2005;89:775–82.
Article
CAS
Google Scholar
Jones SI, Gonzalez DO, Vodkin LO. Flux of transcript patterns during soybean seed development. BMC Genomics. 2010; doi:10.1186/1471-2164-11-136.
Gallardo K, Firnhaber C, Zuber H, Hericher D, Belghazi M, Henry C, et al. A combined proteome and transcriptome analysis of developing Medicago truncatula seeds: evidence for metabolic specialization of maternal and filial tissues. Mol Cell Proteomics. 2007;6:2165–79.
Article
CAS
Google Scholar
Jones SI, Vodkin LO. Using RNA-Seq to profile soybean seed development from fertilization to maturity. PloS One. 2013; doi:10.1371/journal.pone.0059270.