Molina A: A decade of rituximab: improving survival outcomes in non-Hodgkin's lymphoma. Annu Rev Med. 2008, 59: 237-250. 10.1146/annurev.med.59.060906.220345.
Article
CAS
Google Scholar
Nahta R, Esteva FJ: Trastuzumab: triumphs and tribulations. Oncogene. 2007, 26 (25): 3637-3643. 10.1038/sj.onc.1210379.
Article
CAS
Google Scholar
Jain RK: Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res. 1990, 50 (3 Suppl): 814s-819s.
CAS
Google Scholar
Reilly RM, Sandhu J, Alvarez-Diez TM, Gallinger S, Kirsh J, Stern H: Problems of delivery of monoclonal antibodies. Pharmaceutical and pharmacokinetic solutions. Clin Pharmacokinet. 1995, 28 (2): 126-142. 10.2165/00003088-199528020-00004.
Article
CAS
Google Scholar
Thrush GR, Lark LR, Clinchy BC, Vitetta ES: Immunotoxins: an update. Annu Rev Immunol. 1996, 14: 49-71. 10.1146/annurev.immunol.14.1.49.
Article
CAS
Google Scholar
Holliger P, Winter G: Engineering bispecific antibodies. Curr Opin Biotechnol. 1993, 4 (4): 446-449. 10.1016/0958-1669(93)90010-T.
Article
CAS
Google Scholar
Werner RG: Economic aspects of commercial manufacture of biopharmaceuticals. J Biotechnol. 2004, 113: 1-3. 10.1016/j.jbiotec.2004.04.036.
Article
Google Scholar
Behr TM, Memtsoudis S, Sharkey RM, Blumenthal RD, Dunn RM, Gratz S, Wieland E, Nebendahl K, Schmidberger H, Goldenberg DM, et al: Experimental studies on the role of antibody fragments in cancer radio-immunotherapy: Influence of radiation dose and dose rate on toxicity and anti-tumor efficacy. Int J Cancer. 1998, 77 (5): 787-795. 10.1002/(SICI)1097-0215(19980831)77:5<787::AID-IJC19>3.0.CO;2-Z.
Article
CAS
Google Scholar
Wu AM, Chen W, Raubitschek A, Williams LE, Neumaier M, Fischer R, Hu SZ, Odom-Maryon T, Wong JY, Shively JE: Tumor localization of anti-CEA single-chain Fvs: improved targeting by non-covalent dimers. Immunotechnology. 1996, 2 (1): 21-36. 10.1016/1380-2933(95)00027-5.
Article
CAS
Google Scholar
Hu S, Shively L, Raubitschek A, Sherman M, Williams LE, Wong JY, Shively JE, Wu AM: Minibody: A novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res. 1996, 56 (13): 3055-3061.
CAS
Google Scholar
Adams GP, Schier R, McCall AM, Crawford RS, Wolf EJ, Weiner LM, Marks JD: Prolonged in vivo tumour retention of a human diabody targeting the extracellular domain of human HER2/neu. Br J Cancer. 1998, 77 (9): 1405-1412.
Article
CAS
Google Scholar
Viti F, Tarli L, Giovannoni L, Zardi L, Neri D: Increased binding affinity and valence of recombinant antibody fragments lead to improved targeting of tumoral angiogenesis. Cancer Res. 1999, 59 (2): 347-352.
CAS
Google Scholar
Sharkey RM, Goldenberg DM: Targeted therapy of cancer: new prospects for antibodies and immunoconjugates. CA Cancer J Clin. 2006, 56 (4): 226-243. 10.3322/canjclin.56.4.226.
Article
Google Scholar
Schrama D, Reisfeld RA, Becker JC: Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov. 2006, 5 (2): 147-159. 10.1038/nrd1957.
Article
CAS
Google Scholar
Wu AM, Senter PD: Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol. 2005, 23 (9): 1137-1146. 10.1038/nbt1141.
Article
CAS
Google Scholar
Kostelny SA, Cole MS, Tso JY: Formation of a bispecific antibody by the use of leucine zippers. J Immunol. 1992, 148 (5): 1547-1553.
CAS
Google Scholar
Pack P, Pluckthun A: Miniantibodies: use of amphipathic helices to produce functional, flexibly linked dimeric FV fragments with high avidity in Escherichia coli. Biochemistry. 1992, 31 (6): 1579-1584. 10.1021/bi00121a001.
Article
CAS
Google Scholar
Chang HC, Bao Z, Yao Y, Tse AG, Goyarts EC, Madsen M, Kawasaki E, Brauer PP, Sacchettini JC, Nathenson SG, et al: A general method for facilitating heterodimeric pairing between two proteins: application to expression of alpha and beta T-cell receptor extracellular segments. Proc Natl Acad Sci USA. 1994, 91 (24): 11408-11412. 10.1073/pnas.91.24.11408.
Article
CAS
Google Scholar
Kipriyanov SM, Little M, Kropshofer H, Breitling F, Gotter S, Dubel S: Affinity enhancement of a recombinant antibody: formation of complexes with multiple valency by a single-chain Fv fragment-core streptavidin fusion. Protein Eng. 1996, 9 (2): 203-211. 10.1093/protein/9.2.203.
Article
CAS
Google Scholar
Freyre FM, Vazquez JE, Ayala M, Canaan-Haden L, Bell H, Rodriguez I, Gonzalez A, Cintado A, Gavilondo JV: Very high expression of an anti-carcinoembryonic antigen single chain Fv antibody fragment in the yeast Pichia pastoris. J Biotechnol. 2000, 76 (2–3): 157-163. 10.1016/S0168-1656(99)00183-2.
Article
CAS
Google Scholar
Ning D, Junjian X, Qing Z, Sheng X, Wenyin C, Guirong R, Xunzhang W: Production of recombinant humanized anti-HBsAg Fab fragment from Pichia pastoris by fermentation. J Biochem Mol Biol. 2005, 38 (3): 294-299.
Article
CAS
Google Scholar
Cregg JM, Vedvick TS, Raschke WC: Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnology (N Y). 1993, 11 (8): 905-910. 10.1038/nbt0893-905.
Article
CAS
Google Scholar
Schoonjans R, Willems A, Schoonooghe S, Fiers W, Grooten J, Mertens N: Fab chains as an efficient heterodimerization scaffold for the production of recombinant bispecific and trispecific antibody derivatives. J Immunol. 2000, 165 (12): 7050-7057.
Article
CAS
Google Scholar
Hollingsworth MA, Swanson BJ: Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004, 4 (1): 45-60. 10.1038/nrc1251.
Article
CAS
Google Scholar
Wesseling J, Valk van der SW, Hilkens J: A mechanism for inhibition of E-cadherin-mediated cell-cell adhesion by the membrane-associated mucin episialin/MUC1. Mol Biol Cell. 1996, 7 (4): 565-577.
Article
CAS
Google Scholar
Tamada S, Goto M, Nomoto M, Nagata K, Shimizu T, Tanaka S, Sakoda K, Imai K, Yonezawa S: Expression of MUC1 and MUC2 mucins in extrahepatic bile duct carcinomas: its relationship with tumor progression and prognosis. Pathol Int. 2002, 52 (11): 713-723. 10.1046/j.1440-1827.2002.01414.x.
Article
Google Scholar
Hinoda Y, Ikematsu Y, Horinochi M, Sato S, Yamamoto K, Nakano T, Fukui M, Suehiro Y, Hamanaka Y, Nishikawa Y, et al: Increased expression of MUC1 in advanced pancreatic cancer. J Gastroenterol. 2003, 38 (12): 1162-1166. 10.1007/s00535-003-1224-6.
Article
CAS
Google Scholar
Fujita K, Denda K, Yamamoto M, Matsumoto T, Fujime M, Irimura T: Expression of MUC1 mucins inversely correlated with post-surgical survival of renal cell carcinoma patients. Br J Cancer. 1999, 80 (1–2): 301-308. 10.1038/sj.bjc.6690355.
Article
CAS
Google Scholar
Mayer M, Kies U, Kammermeier R, Buchner J: BiP and PDI cooperate in the oxidative folding of antibodies in vitro. J Biol Chem. 2000, 275 (38): 29421-29425. 10.1074/jbc.M002655200.
Article
CAS
Google Scholar
Matlack KE, Misselwitz B, Plath K, Rapoport TA: BiP acts as a molecular ratchet during posttranslational transport of prepro-alpha factor across the ER membrane. Cell. 1999, 97 (5): 553-564. 10.1016/S0092-8674(00)80767-9.
Article
CAS
Google Scholar
Liu YY, Woo JH, Neville DM: Overexpression of an anti-CD3 immunotoxin increases expression and secretion of molecular chaperone BiP/Kar2p by Pichia pastoris. Appl Environ Microbiol. 2005, 71 (9): 5332-5340. 10.1128/AEM.71.9.5332-5340.2005.
Article
CAS
Google Scholar
Willems A, Leoen J, Schoonooghe S, Grooten J, Mertens N: Optimizing expression and purification from cell culture medium of trispecific recombinant antibody derivatives. J Chromatogr B Analyt Technol Biomed Life Sci. 2003, 786 (1–2): 161-176.
Article
CAS
Google Scholar
Sauer PW, Burky JE, Wesson MC, Sternard HD, Qu L: A high-yielding, generic fed-batch cell culture process for production of recombinant antibodies. Biotechnol Bioeng. 2000, 67 (5): 585-597. 10.1002/(SICI)1097-0290(20000305)67:5<585::AID-BIT9>3.0.CO;2-H.
Article
CAS
Google Scholar
Farid SS: Process economics of industrial monoclonal antibody manufacture. J Chromatogr B Analyt Technol Biomed Life Sci. 2007, 848 (1): 8-18. 10.1016/j.jchromb.2006.07.037.
Article
CAS
Google Scholar
Lu D, Jimenez X, Zhang H, Bohlen P, Witte L, Zhu Z: Fab-scFv fusion protein: an efficient approach to production of bispecific antibody fragments. J Immunol Methods. 2002, 267 (2): 213-226. 10.1016/S0022-1759(02)00148-5.
Article
CAS
Google Scholar
Cregg JM, Cereghino JL, Shi J, Higgins DR: Recombinant protein expression in Pichia pastoris. Mol Biotechnol. 2000, 16 (1): 23-52. 10.1385/MB:16:1:23.
Article
CAS
Google Scholar
Gasser B, Mattanovich D: Antibody production with yeasts and filamentous fungi: on the road to large scale?. Biotechnol Lett. 2007, 29 (2): 201-212. 10.1007/s10529-006-9237-x.
Article
CAS
Google Scholar
Lange S, Schmitt J, Schmid RD: High-yield expression of the recombinant, atrazine-specific Fab fragment K411B by the methylotrophic yeast Pichia pastoris. J Immunol Methods. 2001, 255 (1–2): 103-114. 10.1016/S0022-1759(01)00351-9.
Article
CAS
Google Scholar
Wang XB, Zhao BF, Zhao Q, Piao JH, Liu J, Lin Q, Huang HL: A new recombinant single chain trispecific antibody recruits T lymphocytes to kill CEA (carcinoma embryonic antigen) positive tumor cells in vitro efficiently. J Biochem. 2004, 135 (4): 555-565. 10.1093/jb/mvh065.
Article
CAS
Google Scholar
Liu J, Zhao Q, Zhao B, Cheng J, Wang X, Song L, Zhong Z, Lin Q, Huang H: A new format of single chain tri-specific antibody with diminished molecular size efficiently induces ovarian tumor cell killing. Biotechnol Lett. 2005, 27 (22): 1821-1827. 10.1007/s10529-005-6732-4.
Article
CAS
Google Scholar
Atwell JL, Breheney KA, Lawrence LJ, McCoy AJ, Kortt AA, Hudson PJ: scFv multimers of the anti-neuraminidase antibody NC10: length of the linker between VH and VL domains dictates precisely the transition between diabodies and triabodies. Protein Eng. 1999, 12 (7): 597-604. 10.1093/protein/12.7.597.
Article
CAS
Google Scholar
Bayly AM, Kortt AA, Hudson PJ, Power BE: Large-scale bacterial fermentation and isolation of scFv multimers using a heat-inducible bacterial expression vector. J Immunol Methods. 2002, 262 (1–2): 217-227. 10.1016/S0022-1759(02)00021-2.
Article
CAS
Google Scholar
Henderikx P, Coolen-van Neer N, Jacobs A, Linden van der E, Arends JW, Mullberg J, Hoogenboom HR: A human immunoglobulin G1 antibody originating from an in vitro-selected Fab phage antibody binds avidly to tumor-associated MUC1 and is efficiently internalized. Am J Pathol. 2002, 160 (5): 1597-1608.
Article
CAS
Google Scholar
DuBridge RB, Tang P, Hsia HC, Leong PM, Miller JH, Calos MP: Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol Cell Biol. 1987, 7 (1): 379-387.
Article
CAS
Google Scholar
Niwa H, Yamamura K, Miyazaki J: Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 1991, 108 (2): 193-199. 10.1016/0378-1119(91)90434-D.
Article
CAS
Google Scholar
O'Mahoney JV, Adams TE: Optimization of experimental variables influencing reporter gene expression in hepatoma cells following calcium phosphate transfection. DNA Cell Biol. 1994, 13 (12): 1227-1232. 10.1089/dna.1994.13.1227.
Article
Google Scholar