Points to consider in the production and testing of new drugs and biologicals produced by recombinant DNA technology. [http://www.fda.gov/cber/gdlns/ptcdna.htm]
Validation of growth-based rapid microbiological methods for sterility testing of cellular and gene therapy products. [http://www.fda.gov/cber/gdlns/stercgtp.htm]
Titball RW, Sjostedt A, Pavelka MS, Nano FE: Biosafety and selectable markers. Ann N Y Acad Sci. 2007, 1105: 405-417. 10.1196/annals.1409.002.
Article
Google Scholar
Fajardo A, Martinez-Martin N, Mercadillo M, Galan JC, Ghysels B, Matthijs S, Cornelis P, Wiehlmann L, Tummler B, Baquero F, Martinez JL: The neglected intrinsic resistome of bacterial pathogens. PLoS ONE. 2008, 3: e1619-10.1371/journal.pone.0001619.
Article
Google Scholar
Gonzalez A, Davila G, Calva E: Cloning of a DNA sequence that complements glutamine auxotrophy in Saccharomyces cerevisiae. Gene. 1985, 36: 123-129. 10.1016/0378-1119(85)90076-9.
Article
CAS
Google Scholar
Cranenburgh RM, Hanak JA, Williams SG, Sherratt DJ: Escherichia coli strains that allow antibiotic-free plasmid selection and maintenance by repressor titration. Nucleic Acids Res. 2001, 29: E26-10.1093/nar/29.5.e26.
Article
CAS
Google Scholar
Dryselius R, Nekhotiaeva N, Nielsen PE, Good L: Antibiotic-free bacterial strain selection using antisense peptide nucleic acid. Biotechniques. 2003, 35: 1060-1064.
CAS
Google Scholar
Mairhofer J, Pfaffenzeller I, Merz D, Grabherr R: A novel antibiotic free plasmid selection system: advances in safe and efficient DNA therapy. Biotechnol J. 2008, 3: 83-89. 10.1002/biot.200700141.
Article
CAS
Google Scholar
Xu HH, Real L, Bailey MW: An array of Escherichia coli clones over-expressing essential proteins: a new strategy of identifying cellular targets of potent antibacterial compounds. Biochem Biophys Res Commun. 2006, 349: 1250-1257. 10.1016/j.bbrc.2006.08.166.
Article
CAS
Google Scholar
Bergler H, Wallner P, Ebeling A, Leitinger B, Fuchsbichler S, Aschauer H, Kollenz G, Hogenauer G, Turnowsky F: Protein EnvM is the NADH-dependent enoyl-ACP reductase (FabI) of Escherichia coli. J Biol Chem. 1994, 269: 5493-5496.
CAS
Google Scholar
Heath RJ, Yu YT, Shapiro MA, Olson E, Rock CO: Broad spectrum antimicrobial biocides target the FabI component of fatty acid synthesis. J Biol Chem. 1998, 273: 30316-30320. 10.1074/jbc.273.46.30316.
Article
CAS
Google Scholar
McMurry LM, Oethinger M, Levy SB: Triclosan targets lipid synthesis. Nature. 1998, 394: 531-532. 10.1038/28970.
Article
CAS
Google Scholar
Heath RJ, Rubin JR, Holland DR, Zhang E, Snow ME, Rock CO: Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J Biol Chem. 1999, 274: 11110-11114. 10.1074/jbc.274.16.11110.
Article
CAS
Google Scholar
Russell AD: Biocide use and antibiotic resistance: the relevance of laboratory findings to clinical and environmental situations. Lancet Infect Dis. 2003, 3: 794-803. 10.1016/S1473-3099(03)00833-8.
Article
CAS
Google Scholar
Panagakos FS, Volpe AR, Petrone ME, DeVizio W, Davies RM, Proskin HM: Advanced oral antibacterial/anti-inflammatory technology: A comprehensive review of the clinical benefits of a triclosan/copolymer/fluoride dentifrice. J Clin Dent. 2005, 16 (Suppl): S1-19.
Google Scholar
Wohlrab J, Jost G, Abeck D: Antiseptic efficacy of a low-dosed topical triclosan/chlorhexidine combination therapy in atopic dermatitis. Skin Pharmacol Physiol. 2007, 20: 71-76. 10.1159/000097653.
Article
CAS
Google Scholar
Aiello AE, Larson E: Antibacterial cleaning and hygiene products as an emerging risk factor for antibiotic resistance in the community. Lancet Infect Dis. 2003, 3: 501-506. 10.1016/S1473-3099(03)00723-0.
Article
Google Scholar
Chuanchuen R, Beinlich K, Hoang TT, Becher A, Karkhoff-Schweizer RR, Schweizer HP: Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob Agents Chemother. 2001, 45: 428-432. 10.1128/AAC.45.2.428-432.2001.
Article
CAS
Google Scholar
Braoudaki M, Hilton AC: Adaptive resistance to biocides in Salmonella enterica and Escherichia coli O157 and cross-resistance to antimicrobial agents. J Clin Microbiol. 2004, 42: 73-78. 10.1128/JCM.42.1.73-78.2004.
Article
CAS
Google Scholar
Karatzas KA, Webber MA, Jorgensen F, Woodward MJ, Piddock LJ, Humphrey TJ: Prolonged treatment of Salmonella enterica serovar Typhimurium with commercial disinfectants selects for multiple antibiotic resistance, increased efflux and reduced invasiveness. J Antimicrob Chemother. 2007, 60: 947-955. 10.1093/jac/dkm314.
Article
CAS
Google Scholar
Cole EC, Addison RM, Rubino JR, Leese KE, Dulaney PD, Newell MS, Wilkins J, Gaber DJ, Wineinger T, Criger DA: Investigation of antibiotic and antibacterial agent cross-resistance in target bacteria from homes of antibacterial product users and nonusers. J Appl Microbiol. 2003, 95: 664-676. 10.1046/j.1365-2672.2003.02022.x.
Article
CAS
Google Scholar
McBain AJ, Bartolo RG, Catrenich CE, Charbonneau D, Ledder RG, Price BB, Gilbert P: Exposure of sink drain microcosms to triclosan: population dynamics and antimicrobial susceptibility. Appl Environ Microbiol. 2003, 69: 5433-5442. 10.1128/AEM.69.9.5433-5442.2003.
Article
CAS
Google Scholar
Beier RC, Duke SE, Ziprin RL, Harvey RB, Hume ME, Poole TL, Scott HM, Highfield LD, Alali WQ, Andrews K, et al: Antibiotic and Disinfectant Susceptibility Profiles of Vancomycin-Resistant Enterococcus faecium (VRE) Isolated from Community Wastewater in Texas. Bull Environ Contam Toxicol. 2008
Google Scholar
Opinion on triclosan resistance. [http://www.europa.eu.int/comm/food/fs/sc/ssc/out269_en.pdf]
Drug approvals. [http://www.fda.gov/cder/da/da1201.htm]
Lee C, Kim J, Shin SG, Hwang S: Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J Biotechnol. 2006, 123: 273-280. 10.1016/j.jbiotec.2005.11.014.
Article
CAS
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.
Article
CAS
Google Scholar
Nilsson AI, Zorzet A, Kanth A, Dahlstrom S, Berg OG, Andersson DI: Reducing the fitness cost of antibiotic resistance by amplification of initiator tRNA genes. Proc Natl Acad Sci USA. 2006, 103: 6976-6981. 10.1073/pnas.0602171103.
Article
CAS
Google Scholar
Roth BL, Poot M, Yue ST, Millard PJ: Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl Environ Microbiol. 1997, 63: 2421-2431.
CAS
Google Scholar
Lenski RE, Simpson SC, Nguyen TT: Genetic analysis of a plasmid-encoded, host genotype-specific enhancement of bacterial fitness. J Bacteriol. 1994, 176: 3140-3147.
CAS
Google Scholar
Guzman LM, Belin D, Carson MJ, Beckwith J: Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol. 1995, 177: 4121-4130.
CAS
Google Scholar
Heath RJ, Rock CO: Regulation of fatty acid elongation and initiation by acyl-acyl carrier protein in Escherichia coli. J Biol Chem. 1996, 271: 1833-1836. 10.1074/jbc.271.4.1833.
Article
CAS
Google Scholar
Ward WH, Holdgate GA, Rowsell S, McLean EG, Pauptit RA, Clayton E, Nichols WW, Colls JG, Minshull CA, Jude DA, et al: Kinetic and structural characteristics of the inhibition of enoyl (acyl carrier protein) reductase by triclosan. Biochemistry. 1999, 38: 12514-12525. 10.1021/bi9907779.
Article
CAS
Google Scholar
Weitao T, Nordstrom K, Dasgupta S: Mutual suppression of mukB and seqA phenotypes might arise from their opposing influences on the Escherichia coli nucleoid structure. Mol Microbiol. 1999, 34: 157-168. 10.1046/j.1365-2958.1999.01589.x.
Article
CAS
Google Scholar
Yue TF, Dayton PG, Gutman AB: Mutual Suppression of the Uricosuric Effects of Sulfinpyrazone and Salicylate: a Study in Interactions between Drugs. J Clin Invest. 1963, 42: 1330-1339. 10.1172/JCI104817.
Article
CAS
Google Scholar
Wild DG: Reversion from erythromycin dependence in Escherichia coli: strains altered in ribosomal sub-unit association and ribosome assembly. J Gen Microbiol. 1988, 134: 1251-1263.
CAS
Google Scholar
Goldstein F, Perutka J, Cuirolo A, Plata K, Faccone D, Morris J, Sournia A, Kitzis MD, Ly A, Archer G, Rosato AE: Identification and phenotypic characterization of a beta-lactam-dependent, methicillin-resistant Staphylococcus aureus strain. Antimicrob Agents Chemother. 2007, 51: 2514-2522. 10.1128/AAC.00040-07.
Article
CAS
Google Scholar
Van Bambeke F, Chauvel M, Reynolds PE, Fraimow HS, Courvalin P: Vancomycin-dependent Enterococcus faecalis clinical isolates and revertant mutants. Antimicrob Agents Chemother. 1999, 43: 41-47.
Article
CAS
Google Scholar
Aiello AE, Marshall B, Levy SB, Della-Latta P, Larson E: Relationship between triclosan and susceptibilities of bacteria isolated from hands in the community. Antimicrob Agents Chemother. 2004, 48: 2973-2979. 10.1128/AAC.48.8.2973-2979.2004.
Article
CAS
Google Scholar
Gilbert P, McBain A, Sreenivasan P: Common therapeutic approaches for the control of oral biofilms: microbiological safety and efficacy. Clin Microbiol Infect. 2007, 13 (Suppl 4): 17-24. 10.1111/j.1469-0691.2007.01800.x.
Article
CAS
Google Scholar
Orvos DR, Versteeg DJ, Inauen J, Capdevielle M, Rothenstein A, Cunningham V: Aquatic toxicity of triclosan. Environ Toxicol Chem. 2002, 21: 1338-1349. 10.1897/1551-5028(2002)021<1338:ATOT>2.0.CO;2.
Article
CAS
Google Scholar
Federle TW, Kaiser SK, Nuck BA: Fate and effects of triclosan in activated sludge. Environ Toxicol Chem. 2002, 21: 1330-1337. 10.1897/1551-5028(2002)021<1330:FAEOTI>2.0.CO;2.
Article
CAS
Google Scholar
Aranami K, Readman JW: Photolytic degradation of triclosan in freshwater and seawater. Chemosphere. 2007, 66: 1052-1056. 10.1016/j.chemosphere.2006.07.010.
Article
CAS
Google Scholar
Keating DH, Carey MR, Cronan JE: The unmodified (apo) form of Escherichia coli acyl carrier protein is a potent inhibitor of cell growth. J Biol Chem. 1995, 270: 22229-22235. 10.1074/jbc.270.38.22229.
Article
CAS
Google Scholar
Subrahmanyam S, Cronan JE: Overproduction of a functional fatty acid biosynthetic enzyme blocks fatty acid synthesis in Escherichia coli. J Bacteriol. 1998, 180: 4596-4602.
CAS
Google Scholar
Heath RJ, Li J, Roland GE, Rock CO: Inhibition of the Staphylococcus aureus NADPH-dependent enoyl-acyl carrier protein reductase by triclosan and hexachlorophene. J Biol Chem. 2000, 275: 4654-4659. 10.1074/jbc.275.7.4654.
Article
CAS
Google Scholar
McMurry LM, McDermott PF, Levy SB: Genetic evidence that InhA of Mycobacterium smegmatis is a target for triclosan. Antimicrob Agents Chemother. 1999, 43: 711-713.
Article
CAS
Google Scholar
Heerding DA, Chan G, DeWolf WE, Fosberry AP, Janson CA, Jaworski DD, McManus E, Miller WH, Moore TD, Payne DJ, et al: 1,4-Disubstituted imidazoles are potential antibacterial agents functioning as inhibitors of enoyl acyl carrier protein reductase (FabI). Bioorg Med Chem Lett. 2001, 11: 2061-2065. 10.1016/S0960-894X(01)00404-8.
Article
CAS
Google Scholar
Lu H, Tonge PJ: Inhibitors of FabI, an Enzyme Drug Target in the Bacterial Fatty Acid Biosynthesis Pathway. Acc Chem Res. 2008, 41: 11-20. 10.1021/ar700156e.
Article
CAS
Google Scholar
Heath RJ, Rock CO: A triclosan-resistant bacterial enzyme. Nature. 2000, 406: 145-146. 10.1038/35022656.
Article
CAS
Google Scholar
Marrakchi H, Dewolf WE, Quinn C, West J, Polizzi BJ, So CY, Holmes DJ, Reed SL, Heath RJ, Payne DJ, et al: Characterization of Streptococcus pneumoniae enoyl-(acyl-carrier protein) reductase (FabK). Biochem J. 2003, 370: 1055-1062. 10.1042/BJ20021699.
Article
CAS
Google Scholar