Cameotra SS, Makkar R: Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol. 1998, 50: 520-529. 10.1007/s002530051329.
Article
CAS
Google Scholar
Khopade A, Biao R, Liu X, Mahadik K, Zhang L, Kokare C: Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination. 2012, 285: 198-204.
Article
CAS
Google Scholar
Kiran GS, Selvin J, Manilal A, Sujith S: Biosurfactants as green stabilizer for the biological synthesis of nanoparticles. Crit Rev Biotechnol. 2011, 31: 354-364. 10.3109/07388551.2010.539971.
Article
CAS
Google Scholar
Haferburg G, Kothe E: Microbes and metals: interactions in the environment. J Basic Microbiol. 2007, 47: 453-467. 10.1002/jobm.200700275.
Article
CAS
Google Scholar
Kiran GS, Sabu A, Selvin J: Synthesis of silver nanoparticles by glycolipid biosurfactant produced from marine Brevibacterium casei MSA19. J Biotechnol. 2010, 148: 221-225. 10.1016/j.jbiotec.2010.06.012.
Article
CAS
Google Scholar
Kiran GS, Anto Thomas T, Selvin J: Production of a new glycolipid biosurfactant from marine Nocardiopsis lucentensis MSA04 in solid-state cultivation. Coll Surf B: Biointerf. 2010, 78: 8-16. 10.1016/j.colsurfb.2010.01.028.
Article
CAS
Google Scholar
Makkar RS, Cameotra SS: An update on the use of unconventional substrates for biosurfactants production and their new applications. Appl Microbiol Biotechnol. 2002, 58: 428-434. 10.1007/s00253-001-0924-1.
Article
CAS
Google Scholar
Flores M, Colon N, Rivera O, Villalba N, Baez Y, Quispitupa D, Avalos J, Perales O: A study of the growth curves of C. xerosis and E. coli bacteria in mediums containing cobalt ferrite nanoparticles. Mat Res Soc Symp Proc. 2004, 820-
Google Scholar
Merceda T, Santosa S, Riveraa O, Villalbaa N, Baeza Y, Gaudiera J, Avalosa J, Peralesa O, Tomara MS, Parra-Palominoa A, Avalos J: Effect of zinc oxide nanocrystals in media containing E. coli and C. xerosis bacteria. Mater Res Soc Symp Proc. 2006, 900:
Google Scholar
Das SK, Das AR, Guha AK: Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir. 2009, 25: 8192-8199. 10.1021/la900585p.
Article
CAS
Google Scholar
Sjogren CE, Johansson C, Naevestad A, Sontum PC, Saebo BK, Fahlvik AK: Crystal size and properties of superparamagnetic iron oxide (SPIO) particles. Magn Reson Imaging. 1997, 15: 55-67. 10.1016/S0730-725X(96)00335-9.
Article
CAS
Google Scholar
Perez JM, O’Loughin T, Simeone FJ, Weissleder R, Josephson L: DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA cleaving agents. J Am Chem Soc. 2002, 124: 2856-2857. 10.1021/ja017773n.
Article
CAS
Google Scholar
Fayati MD, Rahe EK, Md Angazi AT, Alizeh SK, Barani HN: The effect of magnetic Fe3o4 nanoparticles on genetically manipulated bacterium, Pseudomonas aeruginosa (P SOX4). Iran J Biotech. 2013, 11: 41-46. 10.5812/ijb.9302.
Article
Google Scholar
Liu J, Vipulanandan C, Cooper TF, Vipulanandan G: Effects of Fe nanoparticles on bacterial growth and biosurfactant production. J Nanopart Res. 2013, 15: 1405-
Article
Google Scholar
Montalvo NF, Mohamed NM, Enticknap JJ, Hill RT: Novel actinobacteria from marine sponges. Antonie Van Leeuwenhoek. 2005, 87: 29-36. 10.1007/s10482-004-6536-x.
Article
CAS
Google Scholar
Selvin J, Shanmughapriya S, Gandhimathi R, Seghal KG, Rajeetha Ravji T, Natarajaseenivasan K, Hema TA: Optimization and production of novel antimicrobial agents from sponge associated marine actinomycetes Nocardiopsis dassonvillei MAD08. Appl Microbiol Biotechnol. 2009a, 83: 435-445. 10.1007/s00253-009-1878-y.
Article
CAS
Google Scholar
Meyer B, Kuever J: Phylogenetic diversity and spatial distribution of the microbial community associated with the caribbean deep-water sponge Polymastia cf. corticata by 16S rRNA, aprA, and amoA gene analysis. Microbial Ecol. 2007, 56: 306-321.
Article
Google Scholar
Blanco M, Meira A, Baldomir D, Rivas J, Lopez MA: UV–VIS spectra of small iron particles. IEEE Trans Mag. 1994, 30: 739-741. 10.1109/20.312393.
Article
Google Scholar
Chae SR, Therezien M, Budarz JF, Wessel L, Lin S, Xiao Y, Wiesner MR: Comparison of the photosensitivity and bacterial toxicity of spherical and tubular fullerenes of variable aggregate size. J Nanopart Res. 2011, 13: 5121-5127. 10.1007/s11051-011-0492-y.
Article
CAS
Google Scholar
Sadiq IM, Pakrashi S, Chandrasekaran N, Mukherjee A: Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. J Nanopart Res. 2011, 13: 3287-3299. 10.1007/s11051-011-0243-0.
Article
CAS
Google Scholar
Choi O, Yu CP, Fernandez GE, Hu ZQ: Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures. Water Res. 2010, 44: 6095-6103. 10.1016/j.watres.2010.06.069.
Article
CAS
Google Scholar
Li F, Lei C, Shen Q, Li L, Wang M, Guo M, Huang Y, Nie Z, Yao S: Analysis of copper nanoparticles toxicity based on a stress-responsive bacterial biosensor array. Nanoscale. 2013, 5: 653-662. 10.1039/c2nr32156d.
Article
CAS
Google Scholar
Ehrlich HL: Microbes and metals. Appl Microbiol Biotechnol. 1997, 48: 687-692. 10.1007/s002530051116.
Article
CAS
Google Scholar
Hommel RK, Ratledge C: Biosynthetic mechanisms of low molecular weight surfactants and their precursor molecules. Biosurfactant: Production, properties and applications. Edited by: Kosaric N. 1993, Marcel Bekker Inc NY, 3-63.
Google Scholar
Bagg A, Neilands JB: Ferric uptake regulation protein acts as a repressor, employing iron II as a cofactor to bind the operator of an iron transporter operon in E.coliFerric uptake regulation protein acts as a repressor, employing iron II as a cofactor to bind the operator of an iron transporter operon in E.coli. Biochem. 1987, 2617: 5471-5477.
Article
Google Scholar
Petersson G: Gas chromatography–mass spectrometry of sugars and related hydroxy acids as trimethylsilyl derivatives. Svensk Papperstidning. 1974, 77: 5-
Google Scholar
Selvin J, Lipton AP: Vibrio alginolyticus associated with white spot disease of Penaeus monodon. Dis Aquat Org. 2003, 57: 147-150.
Article
Google Scholar
He F, Zhao D, Liu J, Roberts CB: Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res. 2006, 46: 29-34.
Article
Google Scholar
He S, Feng Y, Ren H, Zhang Y, Gu N, Lin X: The impact of iron oxide magnetic nanoparticles on the soil bacterial community. J Soils Sediments. 2011, 11: 1408-1417. 10.1007/s11368-011-0415-7.
Article
CAS
Google Scholar
Selvin J, Thangavelu T, Kiran GS, Gandhimathi R, Shanmughapriya S: Culturable heterotrophic bacteria from the marine sponge Dendrilla nigra: isolation and phylogenetic diversity of actinobacteria. Hel Mar Res. 2009, 63: 239-247. 10.1007/s10152-009-0153-z.
Article
Google Scholar
Selvin J, Soniya J, Asha KRT, Manjusha WA, Sangeetha VS, Jayaseema DM, Antony MC, Vinitha DAJ: Antibacterial potential of antagonistic Streptomyces sp. isolated from the marine sponge Dendrilla nigra. FEMS Microbiol Ecol. 2004, 50: 117-122. 10.1016/j.femsec.2004.06.007.
Article
CAS
Google Scholar
Morikawa M, Daido H, Takao T, Marato S, Shimonishi Y, Imanaka T: A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS 38. J Bacteriol. 1993, 175: 6459-6466.
CAS
Google Scholar
Kiran GS, Hema TA, Gandhimathi R, Selvin J, Manilal A, Sujith S, Natarajaseenivasan K: Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3. Coll Surf B: Biointerf. 2009, 73: 250-256. 10.1016/j.colsurfb.2009.05.025.
Article
CAS
Google Scholar
Paraszkiewicz K, Kanwal A, Dlugonski J: Emulsifier production by steroid transforming filamentous fungus Curvularia lunata, growth and product characterization. J Biotechnol. 1992, 92: 287-294.
Article
Google Scholar
Lechevalier MP: Ecological associations involving actinomycetes. Actinomycetes. Edited by: Schaal KP, Pulverer G. 1981, Stuttgart: Gustav Fischer Verlag, 159-166.
Google Scholar
Ferrara GB, Murgia B, Parodi AM, Valisano L, Cerrano C, Palmisano G, Bavestrello G, Sara M: The assessment of DNA from marine organisms via a modified salting-out protocol. Cell Mol Biol Lett. 2006, 11: 55-160.
Article
Google Scholar
Kiran GS, Thomas TA, Selvin J, Sabarathnam B, Lipton AP: Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacteriumaureum MSA13 in solid state culture. Bioresour Technol. 2010, 101: 2389-2396. 10.1016/j.biortech.2009.11.023.
Article
Google Scholar
Montgomery DC: Analysis and design of experiments. 1997, New York, NY: Wiley, 4
Google Scholar
Neto DC, Meira JA, de Araujo JM, Mitchell DA, Krieger N: Optimization of the production of rhamnolipids by Pseudomonas aeruginosa UFPEDA 614 in solid-state culture. Appl Microbiol Biotech. 2008, 81: 441-448. 10.1007/s00253-008-1663-3.
Article
Google Scholar
Dubois M, Gilies K, Hammilton JK, Robers PA, Smith FA: A colorimetric method for the determinationof sugars related substances. Anal Chem. 1951, 28: 350-356.
Article
Google Scholar
Benincasa M: Rhamnolipid production by P. aeruginosa LBI growing on soap-stock as the sole carbon source. J Food Eng. 2002, 3: 283-288.
Article
Google Scholar