Schroder C, Selig M, Schonheit P: Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium thermotoga maritima: involvement of the embden-meyerhof pathway. Arch Microbiol. 1994, 161 (6): 460-470.
CAS
Google Scholar
Selig M, Xavier KB, Santos H, Schonheit P: Comparative analysis of embden-meyerhof and entner-doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium thermotoga. Arch Microbiol. 1997, 167 (4): 217-232.
CAS
Google Scholar
Han D, Norris SM, Xu Z: Construction and transformation of a Thermotoga-E coli shuttle vector. BMC Biotechnol. 2012, 12: 2-10.1186/1472-6750-12-2.
Article
CAS
Google Scholar
Yu JS, Vargas M, Mityas C, Noll KM: Liposome-mediated DNA uptake and transient expression in Thermotoga. Extremophiles. 2001, 5 (1): 53-60. 10.1007/s007920000173.
Article
CAS
Google Scholar
Schwarzenlander C, Averhoff B: Characterization of DNA transport in the thermophilic bacterium Thermus thermophilus HB27. FEBS J. 2006, 273 (18): 4210-4218. 10.1111/j.1742-4658.2006.05416.x.
Article
CAS
Google Scholar
Smith HO, Gwinn ML, Salzberg SL: DNA uptake signal sequences in naturally transformable bacteria. Res Microbiol. 1999, 150 (9–10): 603-616.
Article
CAS
Google Scholar
Dubnau D: Binding and transport of transforming DNA by Bacillus subtilis: the role of type-IV pilin-like proteins–a review. Gene. 1997, 192 (1): 191-198. 10.1016/S0378-1119(96)00804-9.
Article
CAS
Google Scholar
Dubnau D: DNA uptake in bacteria. Annu Rev Microbiol. 1999, 53: 217-244. 10.1146/annurev.micro.53.1.217.
Article
CAS
Google Scholar
Averhoff B, Friedrich A: Type IV pili-related natural transformation systems: DNA transport in mesophilic and thermophilic bacteria. Arch Microbiol. 2003, 180 (6): 385-393. 10.1007/s00203-003-0616-6.
Article
CAS
Google Scholar
Claverys JP, Martin B: Bacterial “competence” genes: signatures of active transformation, or only remnants?. Trends Microbiol. 2003, 11 (4): 161-165. 10.1016/S0966-842X(03)00064-7.
Article
CAS
Google Scholar
Berge M, Mortier-Barriere I, Martin B, Claverys JP: Transformation of Streptococcus pneumoniae relies on DprA- and RecA-dependent protection of incoming DNA single strands. Mol Microbiol. 2003, 50 (2): 527-536. 10.1046/j.1365-2958.2003.03702.x.
Article
CAS
Google Scholar
Berge M, Moscoso M, Prudhomme M, Martin B, Claverys JP: Uptake of transforming DNA in gram-positive bacteria: a view from streptococcus pneumoniae. Mol Microbiol. 2002, 45 (2): 411-421. 10.1046/j.1365-2958.2002.03013.x.
Article
CAS
Google Scholar
Mortier-Barriere I, Velten M, Dupaigne P, Mirouze N, Pietrement O, McGovern S, Fichant G, Martin B, Noirot P, Le Cam E, Polard P, Claverys JP: A key presynaptic role in transformation for a widespread bacterial protein: DprA conveys incoming ssDNA to RecA. Cell. 2007, 130 (5): 824-836. 10.1016/j.cell.2007.07.038.
Article
CAS
Google Scholar
Gwinn ML, Ramanathan R, Smith HO, Tomb JF: A new transformation-deficient mutant of Haemophilus influenzae Rd with normal DNA uptake. J Bacteriol. 1998, 180 (3): 746-748.
CAS
Google Scholar
Johnsborg O, Havarstein LS: Regulation of natural genetic transformation and acquisition of transforming DNA in Streptococcus pneumoniae. FEMS Microbiol Rev. 2009, 33 (3): 627-642. 10.1111/j.1574-6976.2009.00167.x.
Article
CAS
Google Scholar
Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK: Chitin induces natural competence in Vibrio cholerae. Sci. 2005, 310: 1824-1827. 10.1126/science.1120096.
Article
CAS
Google Scholar
Mironczuk AM, Kovacs AT, Kuipers OP: Induction of natural competence in Bacillus cereus ATCC14579. J Microbial Biotechnol. 2008, 1: 226-235. 10.1111/j.1751-7915.2008.00023.x.
Article
CAS
Google Scholar
Tsen SD, Fang SS, Chen MJ, Chien JY, Lee CC, Tsen DH: Natural plasmid transformation in Escherichia coli. J Biomed Sci. 2002, 9 (3): 246-252.
CAS
Google Scholar
Cava F, Hidalgo A, Berenguer J: Thermus thermophilus as biological model. Extremophiles. 2009, 13 (2): 213-231. 10.1007/s00792-009-0226-6.
Article
CAS
Google Scholar
Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM: Evidence for lateral gene transfer between archaea and bacteria from genome sequence of thermotoga maritima. Nature. 1999, 399 (6734): 323-329. 10.1038/20601.
Article
CAS
Google Scholar
Nesbo CL, Doolittle WF, Mongodin EF, Nelson KE: Outside forces helped shape the Thermotoga metagenome. Microbe. 2006, 1 (5): 235-241.
Google Scholar
Noll KM, Thirangoon K: Interdomain transfers of sugar transporters overcome barriers to gene expression. Methods Mol Biol. 2009, 532: 309-322. 10.1007/978-1-60327-853-9_18.
Article
CAS
Google Scholar
Zhaxybayeva O, Swithers KS, Lapierre P, Fournier GP, Bickhart DM, DeBoy RT, Nelson KE, Nesbo CL, Doolittle WF, Gogarten JP, Noll KM: On the chimeric nature, thermophilic origin, and phylogenetic placement of the thermotogales. Proc Natl Acad Sci U S A. 2009, 106 (14): 5865-5870. 10.1073/pnas.0901260106.
Article
CAS
Google Scholar
Harriott OT, Huber R, Stetter KO, Betts PW, Noll KM: A cryptic miniplasmid from the hyperthermophilic bacterium thermotoga Sp strain Rq7. J Bacteriol. 1994, 176 (9): 2759-2762.
CAS
Google Scholar
Akimkina T, Ivanov P, Kostrov S, Sokolova T, Bonch-Osmolovskaya E, Firman K, Dutta CF, McClellan JA: A highly conserved plasmid from the extreme thermophile thermotoga maritima MC24 is a member of a family of plasmids distributed worldwide. Plasmid. 1999, 42 (3): 236-240. 10.1006/plas.1999.1429.
Article
CAS
Google Scholar
Nesbo CL, Dlutek M, Doolittle WF: Recombination in thermotoga: implications for species concepts and biogeography. Genetics. 2006, 172 (2): 759-769.
Article
CAS
Google Scholar
Belkin S, Wirsen CO, Jannasch HW: A new sulfur-reducing, extremely thermophilic eubacterium from a submarine thermal vent. Appl Environ Microbiol. 1986, 51 (6): 1180-1185.
CAS
Google Scholar
Huber R, Langworthy TA, Konig H, Thomm M, Woese CR, Sleytr UB, Stetter KO: Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 degrees C. Arch Microbiol. 1986, 144 (4): 324-333. 10.1007/BF00409880.
Article
CAS
Google Scholar
Sissons CH, Sharrock KR, Daniel RM, Morgan HW: Isolation of cellulolytic anaerobic extreme thermophiles from new zealand thermal sites. Appl Environ Microbiol. 1987, 53 (4): 832-838.
CAS
Google Scholar
Grant SG, Jessee J, Bloom FR, Hanahan D: Differential plasmid rescue from transgenic mouse DNAs into escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A. 1990, 87 (12): 4645-4649. 10.1073/pnas.87.12.4645.
Article
CAS
Google Scholar
Lasa I, Caston JR, Fernandez-Herrero LA, de Pedro MA, Berenguer J: Insertional mutagenesis in the extreme thermophilic eubacteria thermus thermophilus HB8. Mol Microbiol. 1992, 6 (11): 1555-1564. 10.1111/j.1365-2958.1992.tb00877.x.
Article
CAS
Google Scholar
Van Ooteghem SA, Beer SK, Yue PC: Hydrogen production by the thermophilic bacterium thermotoga neapolitana. Appl Biochem Biotechnol. 2002, 98: 177-189.
Article
Google Scholar
Xu Z, Han D, Cao J, Saini U: Cloning and characterization of the TneDI restriction: modification system of thermotoga neapolitana. Extremophiles. 2011, 15 (6): 665-672. 10.1007/s00792-011-0397-9.
Article
CAS
Google Scholar
Velappan N, Sblattero D, Chasteen L, Pavlik P, Bradbury AR: Plasmid incompatibility: more compatible than previously thought?. Protein Eng Des Sel. 2007, 20 (7): 309-313. 10.1093/protein/gzm005.
Article
CAS
Google Scholar
Mercier A, Bertolla F, Passelegue-Robe E, Simonet P: Influence of DNA conformation and role of comA and recA on natural transformation in Ralstonia solanacearum. Can J Microbiol. 2009, 55 (6): 762-770. 10.1139/W09-025.
Article
CAS
Google Scholar
Lo Scrudato M, Blokesch M: The regulatory network of natural competence and transformation of Vibrio cholerae. PLoS Genet. 2012, 8 (6): e1002778-10.1371/journal.pgen.1002778.
Article
CAS
Google Scholar
Lin EA, Zhang XS, Levine SM, Gill SR, Falush D, Blaser MJ: Natural transformation of helicobacter pylori involves the integration of short DNA fragments interrupted by gaps of variable size. PLoS Pathog. 2009, 5 (3): e1000337-10.1371/journal.ppat.1000337.
Article
Google Scholar
Londono-Vallejo JA, Dubnau D: comF, a bacillus subtilis late competence locus, encodes a protein similar to ATP-dependent RNA/DNA helicases. Mol Microbiol. 1993, 9 (1): 119-131. 10.1111/j.1365-2958.1993.tb01674.x.
Article
CAS
Google Scholar
Friedrich A, Prust C, Hartsch T, Henne A, Averhoff B: Molecular analyses of the natural transformation machinery and identification of pilus structures in the extremely thermophilic bacterium thermus thermophilus strain HB27. Appl Environ Microbiol. 2002, 68 (2): 745-755. 10.1128/AEM.68.2.745-755.2002.
Article
CAS
Google Scholar