Abramson M, Shoseyov O, Shani Z: Plant cell wall reconstruction toward improved lignocellulosic production and processability. Plant Science. 2010, 178 (2): 61-72. 10.1016/j.plantsci.2009.11.003.
Article
Google Scholar
Gressel J: Transgenics are imperative for biofuel crops. Plant Science. 2008, 174 (3): 246-263. 10.1016/j.plantsci.2007.11.009.
Article
Google Scholar
Rubin EM: Genomics of cellulosic biofuels. Nature. 2008, 454 (7206): 841-845. 10.1038/nature07190.
Article
Google Scholar
Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN: Plants to power: bioenergy to fuel the future. Trends in Plant Science. 2008, 13 (8): 421-429. 10.1016/j.tplants.2008.06.001.
Article
Google Scholar
Bouton JH: Molecular breeding of switchgrass for use as a biofuel crop. Current Opinion in Genetics & Development. 2007, 17 (6): 553-558. 10.1016/j.gde.2007.08.012.
Article
Google Scholar
McLaughlin SB, Walsh ME: Evaluating environmental consequences of producing herbaceous crops for bioenergy. Biomass and Bioenergy. 1998, 14 (4): 317-324. 10.1016/S0961-9534(97)10066-6.
Article
Google Scholar
Schmer MR, Vogel KP, Mitchell RB, Perrin RK: Net energy of cellulosic ethanol from switchgrass. Proceedings of the National Academy of Sciences. 2008, 105 (2): 464-469. 10.1073/pnas.0704767105.
Article
Google Scholar
Burris JN, Mann DGJ, Joyce BL, Stewart CN: An improved tissue culture system for embryogenic callus production and plant regeneration in switchgrass (Panicum virgatum L.). BioEnergy Research. 2009, 2 (4): 267-274. 10.1007/s12155-009-9048-8.
Article
Google Scholar
Richards HA, Rudas VA, Sun H, McDaniel JK, Tomaszewski Z, Conger BV: Construction of a GFP-BAR plasmid and its use for switchgrass transformation. Plant Cell Reports. 2001, 20 (1): 48-54. 10.1007/s002990000274.
Article
Google Scholar
Somleva MN, Snell KD, Beaulieu JJ, Peoples OP, Garrison BR, Patterson NA: Production of polyhydroxybutyrate in switchgrass, a value-added co-product in an important lignocellulosic biomass crop. Plant Biotechnology Journal. 2008, 6 (7): 663-678. 10.1111/j.1467-7652.2008.00350.x.
Article
Google Scholar
Somleva MN, Tomaszewski Z, Conger BV: Agrobacterium-mediated genetic transformation of switchgrass. Crop Sci. 2002, 42 (6): 2080-2087. 10.2135/cropsci2002.2080.
Article
Google Scholar
Li R, Qu R: High throughput Agrobacterium-mediated switchgrass transformation. Biomass and Bioenergy. 2011, 35 (3): 1046-1054. 10.1016/j.biombioe.2010.11.025.
Article
Google Scholar
Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M, Chen F, Foston M, Ragauskas A, Bouton J, et al: Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proceedings of the National Academy of Sciences. 2011, 108 (9): 3803-3808. 10.1073/pnas.1100310108.
Article
Google Scholar
Fu C, Xiao X, Xi Y, Ge Y, Chen F, Bouton J, Dixon RA, Wang Z-Y: Downregulation of cinnamyl alcohol dehydrogenase (CAD) leads to improved saccharification efficiency in switchgrass. BioEnergy Research. 2011,
Google Scholar
Saathoff AJ, Sarath G, Chow EK, Dien BS, Tobias CM: Downregulation of Cinnamyl-Alcohol Dehydrogenase in Switchgrass by RNA Silencing Results in Enhanced Glucose Release after Cellulase Treatment. PLoS ONE. 2011, 6: (1):e16416-
Article
Google Scholar
He C, Lin Z, McElroy D, Wu R: Identification of a rice Actin 2 gene regulatory region for high-level expression of transgenes in monocots. Plant Biotechnology Journal. 2009, 7 (3): 227-239. 10.1111/j.1467-7652.2008.00393.x.
Article
Google Scholar
McElroy D, Zhang W, Cao J, Wu R: Isolation of an efficient actin promoter for use in rice transformation. Plant Cell. 1990, 2 (2): 163-171.
Article
Google Scholar
Christensen AH, Sharrock RA, Quail PH: Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Molecular Biology. 1992, 18 (4): 675-689. 10.1007/BF00020010.
Article
Google Scholar
Sivamani E, Qu R: Expression enhancement of a rice polyubiquitin gene promoter. Plant Molecular Biology. 2006, 60 (2): 225-239. 10.1007/s11103-005-3853-z.
Article
Google Scholar
Wang J, Jiang J, Oard JH: Structure, expression and promoter activity of two polyubiquitin genes from rice (Oryza sativa L.). Plant Science. 2000, 156 (2): 201-211. 10.1016/S0168-9452(00)00255-7.
Article
Google Scholar
Mazarei M, Al-Ahmad H, Rudis MR, Stewart CN: Protoplast isolation and transient gene expression in switchgrass, Panicum virgatum L. Biotechnology Journal. 2008, 3: 354-359. 10.1002/biot.200700189.
Article
Google Scholar
Sparkes IA, Runions J, Kearns A, Hawes C: Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protocols. 2006, 1 (4): 2019-2025. 10.1038/nprot.2006.286.
Article
Google Scholar
Li J-F, Park E, von Arnim A, Nebenfuhr A: The FAST technique: a simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. Plant Methods. 2009, 5 (1): 6-10.1186/1746-4811-5-6.
Article
Google Scholar
VanderGheynst JS, Guo HY, Simmons CW: Response surface studies that elucidate the role of infiltration conditions on Agrobacterium tumefaciens-mediated transient transgene expression in harvested switchgrass (Panicum virgatum). Biomass and Bioenergy. 2008, 32 (4): 372-379.
Google Scholar
Becker T, Templeman T, Viret J-F, Bogorad L: The cab-m7 gene: a light-inducible, mesophyll-specific gene of maize. Plant Molecular Biology. 1992, 20: 49-60. 10.1007/BF00029148.
Article
Google Scholar
Sullivan TD, Christensen A, Quail P: Isolation and characterization of a maize chlorophyll a/b binding protein gene that produces high levels of mRNA in the dark. Molecular and General Genetics. 1989, 215: 431-440. 10.1007/BF00427040.
Article
Google Scholar
Lu J, Sivamani E, Li X, Qu R: Activity of the 5' regulatory regions of the rice polyubiquitin rubi3 gene in transgenic rice plants as analyzed by both GUS and GFP reporter genes. Plant Cell Reports. 2008, 27 (10): 1587-1600. 10.1007/s00299-008-0577-y.
Article
Google Scholar
Peremarti A, Twyman R, Gómez-Galera S, Naqvi S, Farré G, Sabalza M, Miralpeix B, Dashevskaya S, Yuan D, Ramessar K, et al: Promoter diversity in multigene transformation. Plant Molecular Biology. 2010, 73 (4): 363-378. 10.1007/s11103-010-9628-1.
Article
Google Scholar
Saha P, Chakraborti D, Sarkar A, Dutta I, Basu D, Das S: Characterization of vascular-specific RSs1 and rolC promoters for their utilization in engineering plants to develop resistance against hemipteran insect pests. Planta. 2007, 226 (2): 429-442. 10.1007/s00425-007-0493-3.
Article
Google Scholar
Sreekala C, Wu L, Gu K, Wang D, Tian D, Yin Z: Excision of a selectable marker in transgenic rice (Oryza sativa L.) using a chemically regulated Cre/loxP system. Plant Cell Reports. 2005, 24 (2): 86-94. 10.1007/s00299-004-0909-5.
Article
Google Scholar
Callis J, Vierstra RD: Ubiquitin and ubiquitin genes in higher plants. Oxford Surveys of Plant Molecular & Cell Biology. 1989, 6: 1-30.
Article
Google Scholar
Callis J, Raasch JA, Vierstra RD: Ubiquitin extension proteins of Arabidopsis thaliana. Structure, localization, and expression of their promoters in transgenic tobacco. Journal of Biological Chemistry. 1990, 265 (21): 12486-12493.
Google Scholar
Binet MN, Weil JH, Tessier LH: Structure and expression of sunflower ubiquitin genes. Plant Molecular Biology. 1991, 17 (3): 395-407. 10.1007/BF00040634.
Article
Google Scholar
Kawalleck P, Somssich IE, Feldbrügge M, Hahlbrock K, Weisshaar B: Polyubiquitin gene expression and structural properties of the ubi4-2 gene in Petroselinum crispum. Plant Molecular Biology. 1993, 21 (4): 673-684. 10.1007/BF00014550.
Article
Google Scholar
Genschik P, Marbach J, Uze M, Feuerman M, Plesse B, Fleck J: Structure and promoter activity of a stress and developmentally regulated polyubiquitin-encoding gene of Nicotiana tabacum. Gene. 1994, 148 (2): 195-202. 10.1016/0378-1119(94)90689-0.
Article
Google Scholar
Garbarino JE, Belknap WR: Isolation of a ubiquitin-ribosomal protein gene (ubi3) from potato and expression of its promoter in transgenic plants. Plant Molecular Biology. 1994, 24 (1): 119-127. 10.1007/BF00040579.
Article
Google Scholar
Garbarino JE, Oosumi T, Belknap WR: Isolation of a polyubiquitin promoter and Its expression in transgenic potato plants. Plant Physiology. 1995, 109 (4): 1371-1378. 10.1104/pp.109.4.1371.
Article
Google Scholar
Hoffman NE, Ko K, Milkowski D, Pichersky E: Isolation and characterization of tomato cDNA and genomic clones encoding the ubiquitin gene ubi3. Plant Molecular Biology. 1991, 17 (6): 1189-1201. 10.1007/BF00028735.
Article
Google Scholar
Rollfink IK, Silber MV, Pfitzner UM: Characterization and expression of a heptaubiquitin gene from tomato. Gene. 1998, 211 (2): 267-276. 10.1016/S0378-1119(98)00124-3.
Article
Google Scholar
Wei H, Wang M-L, Moore PH, Albert HH: Comparative expression analysis of two sugarcane polyubiquitin promoters and flanking sequences in transgenic plants. Journal of Plant Physiology. 2003, 160 (10): 1241-1251. 10.1078/0176-1617-01086.
Article
Google Scholar
Joung YH, Kamo K: Expression of a polyubiquitin promoter isolated from Gladiolus. Plant Cell Reports. 2006, 25 (10): 1081-1088. 10.1007/s00299-006-0185-7.
Article
Google Scholar
Chiera JM, Bouchard RA, Dorsey SL, Park E, Buenrostro-Nava MT, Ling PP, Finer JJ: Isolation of two highly active soybean (Glycine max (L.) Merr.) promoters and their characterization using a new automated image collection and analysis system. Plant Cell Reports. 2007, 26 (9): 1501-1509. 10.1007/s00299-007-0359-y.
Article
Google Scholar
Maekawa T, Kusakabe M, Shimoda Y, Sato S, Tabata S, Murooka Y, Hayashi M: Polyubiquitin promoter-based binary vectors for overexpression and gene silencing in Lotus japonicus. Molecular Plant-Microbe Interactions. 2008, 21 (4): 375-382. 10.1094/MPMI-21-4-0375.
Article
Google Scholar
Mascarenhas D, Mettler IJ, Pierce DA, Lowe HW: Intron-mediated enhancement of heterologous gene expression in maize. Plant Molecular Biology. 1990, 15 (6): 913-920. 10.1007/BF00039430.
Article
Google Scholar
Norris SR, Meyer SE, Callis J: The intron of Arabidopsis thaliana polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression. Plant Molecular Biology. 1993, 21 (5): 895-906. 10.1007/BF00027120.
Article
Google Scholar
Plesse B, Criqui M-C, Durr A, Parmentier Y, Fleck J, Genschik P: Effects of the polyubiquitin gene Ubi.U4 leader intron and first ubiquitin monomer on reporter gene expression in Nicotiana tabacum. Plant Molecular Biology. 2001, 45 (6): 655-667. 10.1023/A:1010671405594.
Article
Google Scholar
Burke T, Callis J, Vierstra RD: Characterization of a polyubiquitin gene from Arabidopsis thaliana. Molecular and General Genetics. 1988, 213: 435-443. 10.1007/BF00339613.
Article
Google Scholar
Tobias CM, Sarath G, Twigg P, Lindquist E, Pangilinan J, Penning BW, Barry K, McCann MC, Carpita NC, Lazo GR: Comparative genomics in switchgrass using 61,585 high-quality expressed sequence tags. The Plant Genome. 2008, 1 (2): 111-124. 10.3835/plantgenome2008.08.0003.
Article
Google Scholar
Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S: PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research. 2002, 30: 325-327. 10.1093/nar/30.1.325.
Article
Google Scholar
Ciechanover A, Finley D, Varshavsky A: Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell. 1984, 37: 57-66. 10.1016/0092-8674(84)90300-3.
Article
Google Scholar
Jentsch S, McGrath JP, Varshavsky A: The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature. 1987, 329: 131-134. 10.1038/329131a0.
Article
Google Scholar
Rose AB, Beliakoff JA: Intron-mediated enhancement of gene expression independent of unique intron sequences and splicing. Plant Physiology. 2000, 22: 535-542.
Article
Google Scholar
Bianchi M, Crinelli R, Giacomini E, Carloni E, Magnani M: A potent enhancer element in the 5'-UTR intron is crucial for transcriptional regulation of the human ubiquitin C gene. Gene. 2009, 448 (1): 88-101. 10.1016/j.gene.2009.08.013.
Article
Google Scholar
Lu J, Sivamani E, Azhakanandam K, Samadder P, Li X, Qu R: Gene expression enhancement mediated by the 5' UTR intron of the rice rubi3 gene varied remarkably among tissues in transgenic rice plants. Molecular Genetics and Genomics. 2008, 279 (6): 563-572. 10.1007/s00438-008-0333-6.
Article
Google Scholar
Varshavsky A: Ubiquitin fusion technique and related methods. Methods in Enzymology. 2005, 399: 777-799.
Article
Google Scholar
Hondred D, Walker JM, Mathews DE, Vierstra RD: Use of ubiquitin fusions to augment protein expression in transgenic plants. Plant Physiology. 1999, 119 (2): 713-724. 10.1104/pp.119.2.713.
Article
Google Scholar
Mishra S, Yadav DK, Tuli R: Ubiquitin fusion enhances cholera toxin B subunit expression in transgenic plants and the plant-expressed protein binds GM1 receptors more efficiently. Journal of Biotechnology. 2006, 127 (1): 95-108. 10.1016/j.jbiotec.2006.06.002.
Article
Google Scholar
Walker JM, Vierstra RD: A ubiquitin-based vector for the co-ordinated synthesis of multiple proteins in plants. Plant Biotechnology Journal. 2007, 5 (3): 413-421. 10.1111/j.1467-7652.2007.00250.x.
Article
Google Scholar
Sivamani E, Starmer JD, Qu R: Sequence analysis of rice rubi3 promoter gene expression cassettes for improved transgene expression. Plant Science. 2009, 177: 549-556. 10.1016/j.plantsci.2009.08.006.
Article
Google Scholar
Baker RT: Protein expression using ubiquitin fusion and cleavage. Current Opinion in Biotechnology. 1996, 7 (5): 541-546. 10.1016/S0958-1669(96)80059-0.
Article
Google Scholar
Lepetit M, Ehling M, Gigot C, Hahne G: An internal standard improves the reliability of transient expression studies in plant protoplasts. Plant Cell Reports. 1991, 10: 401-405.
Article
Google Scholar
Schledzewski K, Mendel RR: Quantitative transient gene expression: comparison of the promoters for maize polyubiquitin1, rice actin1, maize-derived Emu and CaMV 35S in cells of barley, maize and tobacco. Transgenic Research. 1994, 3: 249-255. 10.1007/BF02336778.
Article
Google Scholar
Leckie F, Devoto A, Delorenzo G: Normalization of GUS by luciferase activity from the same cell extract reduces transformation variability. Biotechniques. 1994, 17 (1): 52-53, 56-57.
Google Scholar
Sivamani E, DeLong RK, Qu RD: Protamine-mediated DNA coating remarkably improves bombardment transformation efficiency in plant cells. Plant Cell Reports. 2009, 28: 213-221. 10.1007/s00299-008-0636-4.
Article
Google Scholar
Cornejo M-J, Luth D, Blankenship KM, Anderson OD, Blechl AE: Activity of a maize ubiquitin promoter in transgenic rice. Plant Molecular Biology. 1993, 23 (3): 567-581. 10.1007/BF00019304.
Article
Google Scholar
Basu C, Kausch AP, Luo H, Chandlee JM: Promoter analysis in transient assays using a GUS reporter gene construct in creeping bentgrass (Agrostis palustris). Journal of Plant Physiology. 2003, 160 (10): 1233-1239. 10.1078/0176-1617-01104.
Article
Google Scholar
Streatfield S, Magallanes-Lundback M, Beifuss K, Brooks C, Harkey R, Love R, Bray J, Howard J, Jilka J, Hood E: Analysis of the maize polyubiquitin-1 promoter heat shock elements and generation of promoter variants with modified expression characteristics. Transgenic Research. 2004, 13 (4): 299-312.
Article
Google Scholar
Garbarino JE, Rockhold DR, Belknap WR: Expression of stress-responsive ubiquitin genes in potato tubers. Plant Molecular Biology. 1992, 20: 235-244. 10.1007/BF00014491.
Article
Google Scholar
Pelham HRH: A regulatory upstream promoter element in Drosophila Hsp70 heat-shock gene. Cell. 1982, 30: 517-528. 10.1016/0092-8674(82)90249-5.
Article
Google Scholar
Dubcovsky J, Ramakrishna W, SanMiguel P, Busso CS, Yan L, Shiloff BA, Bennetzen JL: Comparative sequence analysis of colinear barley and rice BACs. Plant Physiology. 2001, 125: 1342-1353. 10.1104/pp.125.3.1342.
Article
Google Scholar
Lewis SE, Searle SMJ, Harris N, Gibson M, Iyer V, Richter J, Wiel C, Bayraktaroglu L, Birney E, Crosby MA, et al: Apollo: a sequence annotation editor. Genome Biology. 2002, 3 (12): RESEARCH0082
Google Scholar
Salamov AA, Solovyev VV: Ab initio gene finding in Drosophila genomic DNA. Genome Research. 2000, 10: 516-522. 10.1101/gr.10.4.516.
Article
Google Scholar
Burge C, Karlin S: Prediction of complete gene structures in human genomic DNA. Journal of Molecular Biology. 1997, 268: 78-94. 10.1006/jmbi.1997.0951.
Article
Google Scholar
Christensen AH, Quail PH: Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Research. 1996, 5: 213-218. 10.1007/BF01969712.
Article
Google Scholar
McElroy D, Blowers AD, Jenes B, Wu R: Construction of expression vectors based on the rice actin 1 (Act1) 5' region for use in monocot transformation. Molecular and General Genetics. 1991, 231: 150-160. 10.1007/BF00293832.
Article
Google Scholar
Haseloff J, Siemering KR, Prasher DC, Hodge S: Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proceedings of the National Academy of Sciences of the United States of America. 1997, 94: 2122-2127. 10.1073/pnas.94.6.2122.
Article
Google Scholar
Curtis MD, Grossniklaus U: A Gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiology. 2003, 133 (2): 462-469. 10.1104/pp.103.027979.
Article
Google Scholar
Nakagawa T, Suzuki T, Murata S, Nakamura S, Hino T, Maeo K, Tabata R, Kawai T, Tanaka K, Niwa Y, et al: Improved Gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Bioscience, Biotechnology, and Biochemistry. 2007, 71 (8): 2095-2100. 10.1271/bbb.70216.
Article
Google Scholar
Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A: Geneious v4.7. 2009
Google Scholar
Xi Y, Ge Y, Wang ZY: Genetic transformation of switchgrass. Biofuels. 2009, 53-59.
Chapter
Google Scholar
Moore KJ, Moser LE, Vogel KP, Waller SS, Johnson BE, Pedersen JF: Describing and quantifying growth stages of perennial forage grasses. Agronomy Journal. 1991, 83: 1073-1077. 10.2134/agronj1991.00021962008300060027x.
Article
Google Scholar
Alexandrova KS, Denchev PD, Conger BV: In vitro development of inflorescences from switchgrass nodal segments. Crop Science. 1996, 36: 175-178. 10.2135/cropsci1996.0011183X003600010031x.
Article
Google Scholar
Murashige T, Skoog F: A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962, 15 (3): 473-497. 10.1111/j.1399-3054.1962.tb08052.x.
Article
Google Scholar
Che P, Love TM, Frame BR, Wang K, Carriquiry AL, Howell SH: Gene expression patterns during somatic embryo development and germination in maize Hi II callus cultures. Plant Moleculuar Biology. 2006, 62: 1-14. 10.1007/s11103-006-9013-2.
Article
Google Scholar
Chen L, Zhang S, Beachy RN, Fauquet CM: A protocol for consistent, large-scale production of fertile transgenic rice plants. Plant Cell Reports. 1998, 18 (1): 25-31. 10.1007/s002990050526.
Article
Google Scholar
Kikkert J: The Biolistic® PDS-1000/He device. Plant Cell, Tissue and Organ Culture. 1993, 33 (3): 221-226. 10.1007/BF02319005.
Article
Google Scholar
Sanford JC, Smith FD, Russell JA: Optimizing the biolistic process for different biological applications. Methods in Enzymology. 1993, 217: 483-509.
Article
Google Scholar
Trick HN, Dinkins RD, Santarem ER, Samoyolov RDV, Meurer C, Walker D, Parrott WA, Finer JJ, Collins GB: Recent advances in soybean transformation. Plant Tissue Culture and Biotechnology. 1997, 3: 9-26.
Google Scholar
Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LMA, Yang W, Mayer JE, Roa-Rodriguez C: Gene transfer to plants by diverse species of bacteria. Nature. 2005, 433: 629-633. 10.1038/nature03309.
Article
Google Scholar
Jefferson RA, Kavanagh TA, Bevan MW: GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal. 1987, 6: 3901-3907.
Google Scholar
Hofgen R, Willmitzer L: Storage of competent cells for Agrobacterium transformation. Nucleic Acids Research. 1988, 16 (20): 9877-10.1093/nar/16.20.9877.
Article
Google Scholar
Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT: A simple and general method for transferring genes into plants. Science. 1985, 227 (4691): 1229-1231.
Article
Google Scholar
Kosugi S, Ohashi Y, Nakajima K, Arai Y: An improved assay for β-glucuronidase in transformed cells: Methanol almost completely suppresses a putative endogenous β-glucuronidase activity. Plant Science. 1990, 70 (1): 133-140. 10.1016/0168-9452(90)90042-M.
Article
Google Scholar
Hodal L, Bochardt A, Nielsen JE, Mattsson O, Okkels FT: Detection, expression and specific elimination of endogenous β-glucuronidase activity in transgenic and non-transgenic plants. Plant Science. 1992, 87 (1): 115-122. 10.1016/0168-9452(92)90199-V.
Article
Google Scholar
Cervera M: Histochemical and fluorometric assays for uidA (GUS) gene detection. Transgenic plants: Methods and protocols. Edited by: Peña L. 2005, New York, NY: Humana Press, 286: 203-213.
Chapter
Google Scholar
Levene H: Robust tests for the equality of variances. Contributions to probability and statistics. Edited by: Olkin I. 1960, Palo Alto, CA: Stanford University Press
Google Scholar