Fischer M, Bacher A: Biosynthesis of flavocoenzymes. Nat Prod Rep. 2005, 22 (3): 324-350. 10.1039/b210142b.
Article
CAS
Google Scholar
Abbas CA, Sibirny AA: Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev. 2011, 75 (2): 321-360. 10.1128/MMBR.00030-10.
Article
CAS
Google Scholar
Vogl C, Grill S, Schilling O, Stulke J, Mack M, Stolz J: Characterization of riboflavin (vitamin B2) transport proteins from Bacillus subtilis and Corynebacterium glutamicum. J Bacteriol. 2007, 189 (20): 7367-7375. 10.1128/JB.00590-07.
Article
CAS
Google Scholar
Burgess CM, Slotboom DJ, Geertsma ER, Duurkens RH, Poolman B, van Sinderen D: The riboflavin transporter RibU in Lactococcus lactis: molecular characterization of gene expression and the transport mechanism. J Bacteriol. 2006, 188 (8): 2752-2760. 10.1128/JB.188.8.2752-2760.2006.
Article
CAS
Google Scholar
Duurkens RH, Tol MB, Geertsma ER, Permentier HP, Slotboom DJ: Flavin binding to the high affinity riboflavin transporter RibU. J Biol Chem. 2007, 282 (14): 10380-10386. 10.1074/jbc.M608583200.
Article
CAS
Google Scholar
Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS: Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res. 2002, 30 (14): 3141-3151. 10.1093/nar/gkf433.
Article
CAS
Google Scholar
Rodionov DA, Hebbeln P, Eudes A, ter Beek J, Rodionova IA, Erkens GB, Slotboom DJ, Gelfand MS, Osterman AL, Hanson AD, et al: A novel class of modular transporters for vitamins in prokaryotes. J Bacteriol. 2009, 191 (1): 42-51. 10.1128/JB.01208-08.
Article
CAS
Google Scholar
Zhang P, Wang J, Shi Y: Structure and mechanism of the S component of a bacterial ECF transporter. Nature. 2010, 468 (7324): 717-720. 10.1038/nature09488.
Article
CAS
Google Scholar
ter Beek J, Duurkens RH, Erkens GB, Slotboom DJ: Quaternary structure and functional unit of energy coupling factor (ECF)-type transporters. J Biol Chem. 2011, 286 (7): 5471-5475. 10.1074/jbc.M110.199224.
Article
CAS
Google Scholar
Neubauer O, Alfandega A, Schoknecht J, Sternberg U, Pohlmann A, Eitinger T: Two essential arginine residues in the T components of energy-coupling factor transporters. J Bacteriol. 2009, 191 (21): 6482-6488. 10.1128/JB.00965-09.
Article
CAS
Google Scholar
Eitinger T, Rodionov DA, Grote M, Schneider E: Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev. 2011, 35 (1): 3-67. 10.1111/j.1574-6976.2010.00230.x.
Article
CAS
Google Scholar
Lee ER, Blount KF, Breaker RR: Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression. RNA Biol. 2009, 6 (2):
Grill S, Yamaguchi H, Wagner H, Zwahlen L, Kusch U, Mack M: Identification and characterization of two Streptomyces davawensis riboflavin biosynthesis gene clusters. Arch Microbiol. 2007, 188 (4): 377-387. 10.1007/s00203-007-0258-1.
Article
CAS
Google Scholar
Mack M, Grill S: Riboflavin analogs and inhibitors of riboflavin biosynthesis. Appl Microbiol Biotechnol. 2006, 71 (3): 265-275. 10.1007/s00253-006-0421-7.
Article
CAS
Google Scholar
Stüber D, Matile H, Garotta G: System for high-level production in Escherichia coli and rapid purification of recombinant proteins: application to epitope mapping, preparation of antibodies, and structure-function analysis. Immunological Methods. 1990, 4: 121-152.
Google Scholar
Bandrin SV, Beburov M, Rabinovich PM, Stepanov AI: [Riboflavin auxotrophs of Escherichia coli]. Genetika. 1979, 15 (11): 2063-2065.
CAS
Google Scholar
Perkins J, Pero J: Biosynthesis of riboflavin, biotin, folic acid, and cobalamin. Bacillus subtilis and Its Closest Relatives: from Genes to Cells. Edited by: Sonenshein A, Hoch J, Losick R. 2002, Washington DC: ASM Press, 271-286.
Chapter
Google Scholar
Perkins J, Sloma A, Hermann T, Theriault K, Zachgo E, Erdenberger T, Hannett N, Chatterjee NP, Williams V, Rufo GA, Hatch R, Pero J: Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. Journal of Industrial Microbiology and Biotechnology. 1999, 22 (1): 8-18. 10.1038/sj.jim.2900587.
Article
CAS
Google Scholar
Demain AL: Riboflavin oversynthesis. Annu Rev Microbiol. 1972, 26: 369-388. 10.1146/annurev.mi.26.100172.002101.
Article
CAS
Google Scholar
Coquard D, Huecas M, Ott M, van Dijl JM, van Loon AP, Hohmann HP: Molecular cloning and characterisation of the ribC gene from Bacillus subtilis: a point mutation in ribC results in riboflavin overproduction. Mol Gen Genet. 1997, 254 (1): 81-84. 10.1007/s004380050393.
Article
CAS
Google Scholar
Mack M, van Loon AP, Hohmann HP: Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC. J Bacteriol. 1998, 180 (4): 950-955.
CAS
Google Scholar
Stahmann KP, Revuelta JL, Seulberger H: Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol. 2000, 53 (5): 509-516. 10.1007/s002530051649.
Article
CAS
Google Scholar
Forster C, Revuelta JL, Kramer R: Carrier-mediated transport of riboflavin in Ashbya gossypii. Appl Microbiol Biotechnol. 2001, 55 (1): 85-89. 10.1007/s002530000483.
Article
CAS
Google Scholar
Diesveld R, Tietze N, Furst O, Reth A, Bathe B, Sahm H, Eggeling L: Activity of exporters of Escherichia coli in Corynebacterium glutamicum, and their use to increase L-threonine production. J Mol Microbiol Biotechnol. 2009, 16 (3-4): 198-207. 10.1159/000142530.
Article
CAS
Google Scholar
Vrljic M, Garg J, Bellmann A, Wachi S, Freudl R, Malecki MJ, Sahm H, Kozina VJ, Eggeling L, Saier MH: The LysE superfamily: topology of the lysine exporter LysE of Corynebacterium glutamicum, a paradyme for a novel superfamily of transmembrane solute translocators. J Mol Microbiol Biotechnol. 1999, 1 (2): 327-336.
CAS
Google Scholar
Vrljic M, Sahm H, Eggeling L: A new type of transporter with a new type of cellular function: L-lysine export from Corynebacterium glutamicum. Mol Microbiol. 1996, 22 (5): 815-826. 10.1046/j.1365-2958.1996.01527.x.
Article
CAS
Google Scholar
Sambrook J, Fritsch E, Maniatis T: Molecular cloning: a laboratory manual. 1989, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 2
Google Scholar
Bertani G: Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J Bacteriol. 2004, 186 (3): 595-600. 10.1128/JB.186.3.595-600.2004.
Article
CAS
Google Scholar
Studier FW, Moffatt BA: Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986, 189 (1): 113-130. 10.1016/0022-2836(86)90385-2.
Article
CAS
Google Scholar
Spizizen J: Transformation of Biochemically Deficient Strains of Bacillus Subtilis by Deoxyribonucleate. Proc Natl Acad Sci USA. 1958, 44 (10): 1072-1078. 10.1073/pnas.44.10.1072.
Article
CAS
Google Scholar
Saito H, Shibata T, Ando T: Mapping of genes determining nonpermissiveness and host-specific restriction to bacteriophages in Bacillus subtilis Marburg. Mol Gen Genet. 1979, 170 (2): 117-122. 10.1007/BF00337785.
Article
CAS
Google Scholar
Hümbelin M, Griesser V, Keller T, Schurter W, Haiker M, Hohmann HP, Ritz H, Richter G, Bacher A, van Loon APGM: GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase are rate-limiting enzymes in riboflavin synthesis of an industrial Bacillus subtilis strain used for riboflavin production. J Ind Microbiol Biotechnol. 1999, 22: 1-7. 10.1038/sj.jim.2900590.
Article
Google Scholar
Maciag IE, Viret JF, Alonso JC: Replication and incompatibility properties of plasmid pUB110 in Bacillus subtilis. Mol Gen Genet. 1988, 212 (2): 232-240. 10.1007/BF00334690.
Article
CAS
Google Scholar
Chang S, Cohen SN: High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol Gen Genet. 1979, 168 (1): 111-115. 10.1007/BF00267940.
Article
CAS
Google Scholar
Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3.
Article
CAS
Google Scholar